These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28157555)

  • 1. Release of volatile and semi-volatile toxicants during house fires.
    Hewitt F; Christou A; Dickens K; Walker R; Stec AA
    Chemosphere; 2017 Apr; 173():580-593. PubMed ID: 28157555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne and Dermal Exposure to Polycyclic Aromatic Hydrocarbons, Volatile Organic Compounds, and Particles among Firefighters and Police Investigators.
    Sjöström M; Julander A; Strandberg B; Lewné M; Bigert C
    Ann Work Expo Health; 2019 May; 63(5):533-545. PubMed ID: 31111145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fingerprint of carcinogenic semi-volatile organic compounds (SVOCs) during bonfire night.
    Pongpiachan S
    Asian Pac J Cancer Prev; 2013; 14(5):3243-54. PubMed ID: 23803111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of organic aromatic compounds in soils affected by an uncontrolled tire landfill fire through the use of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.
    Escobar-Arnanz J; Mekni S; Blanco G; Eljarrat E; Barceló D; Ramos L
    J Chromatogr A; 2018 Feb; 1536():163-175. PubMed ID: 29061475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contamination of firefighter personal protective equipment and skin and the effectiveness of decontamination procedures.
    Fent KW; Alexander B; Roberts J; Robertson S; Toennis C; Sammons D; Bertke S; Kerber S; Smith D; Horn G
    J Occup Environ Hyg; 2017 Oct; 14(10):801-814. PubMed ID: 28636458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products.
    Wang Z; Li K; Lambert P; Yang C
    J Chromatogr A; 2007 Jan; 1139(1):14-26. PubMed ID: 17112533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.
    Jumpponen M; Rönkkömäki H; Pasanen P; Laitinen J
    Chemosphere; 2013 Jan; 90(3):1289-93. PubMed ID: 23123113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAHs in corn grains submitted to drying with firewood.
    de Lima RF; Dionello RG; Peralba Mdo C; Barrionuevo S; Radunz LL; Reichert Júnior FW
    Food Chem; 2017 Jan; 215():165-70. PubMed ID: 27542463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fire fighting trainers' exposure to carcinogenic agents in smoke diving simulators.
    Laitinen J; Mäkelä M; Mikkola J; Huttu I
    Toxicol Lett; 2010 Jan; 192(1):61-5. PubMed ID: 19576276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new analytical methodology for a fast evaluation of semi-volatile polycyclic aromatic hydrocarbons in the vapor phase downstream of a diesel engine particulate filter.
    Portet-Koltalo F; Preterre D; Dionnet F
    J Chromatogr A; 2011 Feb; 1218(7):981-9. PubMed ID: 21227441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved method for determining dermal exposure to polycyclic aromatic hydrocarbons.
    Strandberg B; Julander A; Sjöström M; Lewné M; Hatice KA; Bigert C
    Chemosphere; 2018 May; 198():274-280. PubMed ID: 29421739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding airborne contaminants produced by different fuel packages during training fires.
    Fent KW; Mayer A; Bertke S; Kerber S; Smith D; Horn GP
    J Occup Environ Hyg; 2019 Aug; 16(8):532-543. PubMed ID: 31169466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne contaminants during controlled residential fires.
    Fent KW; Evans DE; Babik K; Striley C; Bertke S; Kerber S; Smith D; Horn GP
    J Occup Environ Hyg; 2018 May; 15(5):399-412. PubMed ID: 29494297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Fire Fighting Ensembles: Accumulation and Off-gassing of Combustion Products.
    Kirk KM; Logan MB
    J Occup Environ Hyg; 2015; 12(6):376-83. PubMed ID: 25626009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect.
    Yadav IC; Devi NL; Li J; Zhang G
    Sci Total Environ; 2018 Mar; 616-617():223-235. PubMed ID: 29112844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combustion products generated in simulated industrial fires.
    Kirk KM; Splawinski Z; Bott RC; Logan MB
    J Occup Environ Hyg; 2021; 18(10-11):510-521. PubMed ID: 34478353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the halogenated compounds resulting from the 1997 Plastimet Inc. fire in Hamilton, Ontario, using comprehensive two-dimensional gas chromatography and (ultra)high resolution mass spectrometry.
    Fernando S; Jobst KJ; Taguchi VY; Helm PA; Reiner EJ; McCarry BE
    Environ Sci Technol; 2014 Sep; 48(18):10656-63. PubMed ID: 25133985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of possible carcinogenic compounds in recycled plastic modified asphalt.
    Boom YJ; Enfrin M; Grist S; Giustozzi F
    Sci Total Environ; 2023 Feb; 858(Pt 2):159910. PubMed ID: 36336045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and characterization of volatile organic compounds from burned human and animal remains in fire debris.
    DeHaan JD; Taormina EI; Brien DJ
    Sci Justice; 2017 Mar; 57(2):118-127. PubMed ID: 28284437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the risk to firefighters from chemical vapors and gases during vehicle fire suppression.
    Fent KW; Evans DE
    J Environ Monit; 2011 Mar; 13(3):536-43. PubMed ID: 21274476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.