These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28157598)

  • 1. Influence of high deformation rate, brain region, transverse compression, and specimen size on rat brain shear stress morphology and magnitude.
    Haslach HW; Gipple JM; Leahy LN
    J Mech Behav Biomed Mater; 2017 Apr; 68():88-102. PubMed ID: 28157598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient solid-fluid interactions in rat brain tissue under combined translational shear and fixed compression.
    Haslach HW; Leahy LN; Hsieh AH
    J Mech Behav Biomed Mater; 2015 Aug; 48():12-27. PubMed ID: 25913604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damage to the rat cerebrum under in vitro sinusoidal translational shear deformation.
    Gipple JM; Haslach HW
    J Mech Behav Biomed Mater; 2020 Oct; 110():103969. PubMed ID: 32739843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-extracellular fluid interaction and damage in the mechanical response of rat brain tissue under confined compression.
    Haslach HW; Leahy LN; Riley P; Gullapalli R; Xu S; Hsieh AH
    J Mech Behav Biomed Mater; 2014 Jan; 29():138-50. PubMed ID: 24084652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial fluid-solid interaction within aneurysmal and non-pathological human ascending aortic tissue under translational sinusoidal shear deformation.
    Haslach HW; Gipple J; Harwerth J; Rabin J
    Acta Biomater; 2020 Sep; 113():452-463. PubMed ID: 32645439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical characterization of brain tissue in simple shear at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2013 Dec; 28():71-85. PubMed ID: 23973615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate- and Region-Dependent Mechanical Properties of Göttingen Minipig Brain Tissue in Simple Shear and Unconfined Compression.
    Boiczyk GM; Pearson N; Kote VB; Sundaramurthy A; Subramaniam DR; Rubio JE; Unnikrishnan G; Reifman J; Monson KL
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36524865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between the interstitial fluid and the extracellular matrix in confined indentation.
    Lu Y; Wang W
    J Biomech Eng; 2008 Aug; 130(4):041011. PubMed ID: 18601453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of brain responses between frontal and lateral impacts by finite element modeling.
    Zhang L; Yang KH; King AI
    J Neurotrauma; 2001 Jan; 18(1):21-30. PubMed ID: 11200247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscale compressive behavior of hydrated lamellar bone at high strain rates.
    Peruzzi C; Ramachandramoorthy R; Groetsch A; Casari D; Grönquist P; Rüggeberg M; Michler J; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():403-414. PubMed ID: 34245895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack Propagation and Its Shear Mechanisms in the Bovine Descending Aorta.
    Haslach HW; Leahy LN; Fathi P; Barrett JM; Heyes AE; Dumsha TA; McMahon EL
    Cardiovasc Eng Technol; 2015 Dec; 6(4):501-18. PubMed ID: 26577482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-strain-rate brain injury model using submerged acute rat brain tissue slices.
    Sarntinoranont M; Lee SJ; Hong Y; King MA; Subhash G; Kwon J; Moore DF
    J Neurotrauma; 2012 Jan; 29(2):418-29. PubMed ID: 21970544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertia effects on characterization of dynamic response of brain tissue.
    Sanborn B; Nie X; Chen W; Weerasooriya T
    J Biomech; 2012 Feb; 45(3):434-9. PubMed ID: 22226509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive experimental study on material properties of human brain tissue.
    Jin X; Zhu F; Mao H; Shen M; Yang KH
    J Biomech; 2013 Nov; 46(16):2795-801. PubMed ID: 24112782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive properties and constitutive modeling of different regions of 8-week-old pediatric porcine brain under large strain and wide strain rates.
    Li Z; Yang H; Wang G; Han X; Zhang S
    J Mech Behav Biomed Mater; 2019 Jan; 89():122-131. PubMed ID: 30268868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of prior compression tests on the plantar soft tissue compressive and shear properties.
    Pai S; Vawter PT; Ledoux WR
    J Biomech Eng; 2013 Sep; 135(9):94501. PubMed ID: 23722991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material characterization of the brainstem from oscillatory shear tests.
    Arbogast KB; Margulies SS
    J Biomech; 1998 Sep; 31(9):801-7. PubMed ID: 9802780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.