These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28157608)

  • 1. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance.
    Szöllősi A; Hoschke Á; Rezessy-Szabó JM; Bujna E; Kun S; Nguyen QD
    Chemosphere; 2017 May; 174():58-65. PubMed ID: 28157608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically conductive, immobilized bioanodes for microbial fuel cells.
    Ganguli R; Dunn B
    Nanotechnology; 2012 Jul; 23(29):294013. PubMed ID: 22744309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells.
    Qiao Y; Bao SJ; Li CM; Cui XQ; Lu ZS; Guo J
    ACS Nano; 2008 Jan; 2(1):113-9. PubMed ID: 19206554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells.
    Yong YC; Dong XC; Chan-Park MB; Song H; Chen P
    ACS Nano; 2012 Mar; 6(3):2394-400. PubMed ID: 22360743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of treating oil-containing restaurant wastewater in microbial fuel cell using
    Li Z; Yang S; Song Y; Xu H; Wang Z; Wang W; Zhao Y
    Environ Technol; 2020 Jan; 41(4):420-429. PubMed ID: 30015569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfonated graphene oxide and titanium dioxide coated with nanostructured polyaniline nanocomposites as an efficient cathode catalyst in microbial fuel cells.
    Papiya F; Pattanayak P; Kumar V; Das S; Kundu PP
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110498. PubMed ID: 31924014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells.
    Zhao Y; Nakanishi S; Watanabe K; Hashimoto K
    J Biosci Bioeng; 2011 Jul; 112(1):63-6. PubMed ID: 21498110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power production enhancement with a polyaniline modified anode in microbial fuel cells.
    Lai B; Tang X; Li H; Du Z; Liu X; Zhang Q
    Biosens Bioelectron; 2011 Oct; 28(1):373-7. PubMed ID: 21820889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Performance Improvement of Microbial Fuel Cell with Polyaniline Dopped Graphene Anode].
    Huang LH; Li XF; Ren YP; Wang XH
    Huan Jing Ke Xue; 2017 Apr; 38(4):1717-1725. PubMed ID: 29965178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of polypyrrole on graphite felt as bio-anode to enhance the start-up performance of microbial fuel cells.
    Pu KB; Lu CX; Zhang K; Zhang H; Chen QY; Wang YH
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):429-437. PubMed ID: 31679050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study.
    Atoufi Z; Zarrintaj P; Motlagh GH; Amiri A; Bagher Z; Kamrava SK
    J Biomater Sci Polym Ed; 2017 Oct; 28(15):1617-1638. PubMed ID: 28589747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells.
    Liao ZH; Sun JZ; Sun DZ; Si RW; Yong YC
    Bioresour Technol; 2015 Sep; 192():831-4. PubMed ID: 26094048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells.
    Yu YY; Chen HL; Yong YC; Kim DH; Song H
    Chem Commun (Camb); 2011 Dec; 47(48):12825-7. PubMed ID: 22048750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells.
    Zhao CE; Wang WJ; Sun D; Wang X; Zhang JR; Zhu JJ
    Chemistry; 2014 Jun; 20(23):7091-7. PubMed ID: 24753231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation.
    Yellappa M; Sravan JS; Sarkar O; Reddy YVR; Mohan SV
    Bioresour Technol; 2019 Jul; 284():148-154. PubMed ID: 30928826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide-supported carbon nanofiber-like network derived from polyaniline: A novel composite for enhanced glucose oxidase bioelectrode performance.
    Kang Z; Jiao K; Xu X; Peng R; Jiao S; Hu Z
    Biosens Bioelectron; 2017 Oct; 96():367-372. PubMed ID: 28535471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Letter to the Editor re "Characterization of alginate-brushite in-situ hydrogel composites".
    Bjørnøy SH; Bassett DC; Ucar S; Andreassen JP; Sikorski P
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):930-931. PubMed ID: 27770970
    [No Abstract]   [Full Text] [Related]  

  • 19. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.
    Tang J; Chen S; Yuan Y; Cai X; Zhou S
    Biosens Bioelectron; 2015 Sep; 71():387-395. PubMed ID: 25950933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.