These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 28157612)
1. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism. Li Y; Cundy AB; Feng J; Fu H; Wang X; Liu Y J Environ Manage; 2017 May; 192():100-106. PubMed ID: 28157612 [TBL] [Abstract][Full Text] [Related]
2. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Su C; Ludwig RD Environ Sci Technol; 2005 Aug; 39(16):6208-16. PubMed ID: 16173583 [TBL] [Abstract][Full Text] [Related]
3. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Jagupilla SC; Wazne M; Moon DH Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327 [TBL] [Abstract][Full Text] [Related]
4. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS Li Y; Liang J; Yang Z; Wang H; Liu Y Sci Total Environ; 2019 Mar; 658():315-323. PubMed ID: 30577025 [TBL] [Abstract][Full Text] [Related]
5. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. Du J; Lu J; Wu Q; Jing C J Hazard Mater; 2012 May; 215-216():152-8. PubMed ID: 22417394 [TBL] [Abstract][Full Text] [Related]
6. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). Wazne M; Jagupilla SC; Moon DH; Jagupilla SC; Christodoulatos C; Kim MG J Hazard Mater; 2007 May; 143(3):620-8. PubMed ID: 17276597 [TBL] [Abstract][Full Text] [Related]
7. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue. Geelhoed JS; Meeussen JC; Roe MJ; Hillier S; Thomas RP; Farmer JG; Paterson E Environ Sci Technol; 2003 Jul; 37(14):3206-13. PubMed ID: 12901671 [TBL] [Abstract][Full Text] [Related]
8. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide. He X; Zhong P; Qiu X Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541 [TBL] [Abstract][Full Text] [Related]
9. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents. Xu R; Wang YN; Li S; Sun Y; Gao Y; Guo L; Wang H Ecotoxicol Environ Saf; 2023 Oct; 265():115522. PubMed ID: 37769582 [TBL] [Abstract][Full Text] [Related]
10. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Graham MC; Farmer JG; Anderson P; Paterson E; Hillier S; Lumsdon DG; Bewley RJ Sci Total Environ; 2006 Jul; 364(1-3):32-44. PubMed ID: 16442591 [TBL] [Abstract][Full Text] [Related]
11. Hydrogarnet: a host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes. Hillier S; Lumsdon DG; Brydson R; Paterson E Environ Sci Technol; 2007 Mar; 41(6):1921-7. PubMed ID: 17410785 [TBL] [Abstract][Full Text] [Related]
12. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe Lan Y; Zhang L; Li X; Liu W; Su X; Lin Z Sci Total Environ; 2022 Mar; 813():152637. PubMed ID: 34963612 [TBL] [Abstract][Full Text] [Related]
13. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060 [TBL] [Abstract][Full Text] [Related]
14. Leaching of hexavalent chromium from young chromite ore processing residue. Matern K; Weigand H; Kretzschmar R; Mansfeldt T J Environ Qual; 2020 May; 49(3):712-722. PubMed ID: 33016406 [TBL] [Abstract][Full Text] [Related]
15. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. Jagupilla SC; Moon DH; Wazne M; Christodoulatos C; Kim MG J Hazard Mater; 2009 Aug; 168(1):121-8. PubMed ID: 19272700 [TBL] [Abstract][Full Text] [Related]
16. A New Method (Ball Milling and Sodium Sulfide) for Mechanochemical Treatment of Soda Ash Chromite Ore Processing Residue. Sun Y; Du Y; Lan J; Zhan W; Zhang TC J Hazard Mater; 2021 Aug; 415():125601. PubMed ID: 33756197 [TBL] [Abstract][Full Text] [Related]
17. Long-term stability of FeSO Wang X; Zhang J; Wang L; Chen J; Hou H; Yang J; Lu X J Hazard Mater; 2017 Jan; 321():720-727. PubMed ID: 27701061 [TBL] [Abstract][Full Text] [Related]
18. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment. Tinjum JM; Benson CH; Edil TB Sci Total Environ; 2008 Feb; 391(1):13-25. PubMed ID: 18067949 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior. Zhang DL; Zhang MY; Zhang CH; Sun YJ; Sun X; Yuan XZ Environ Sci Technol; 2016 Mar; 50(6):3111-8. PubMed ID: 26862886 [TBL] [Abstract][Full Text] [Related]
20. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Elzinga EJ; Cirmo A J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]