BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28157724)

  • 1. Orchestration of late events in erythropoiesis by KLF1/EKLF.
    Gnanapragasam MN; Bieker JJ
    Curr Opin Hematol; 2017 May; 24(3):183-190. PubMed ID: 28157724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation.
    Gnanapragasam MN; McGrath KE; Catherman S; Xue L; Palis J; Bieker JJ
    Blood; 2016 Sep; 128(12):1631-41. PubMed ID: 27480112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KLF1 directly coordinates almost all aspects of terminal erythroid differentiation.
    Tallack MR; Perkins AC
    IUBMB Life; 2010 Dec; 62(12):886-90. PubMed ID: 21190291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2.
    Tallack MR; Keys JR; Humbert PO; Perkins AC
    J Biol Chem; 2009 Jul; 284(31):20966-74. PubMed ID: 19457859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factor EKLF (KLF1) recruitment of the histone chaperone HIRA is essential for β-globin gene expression.
    Soni S; Pchelintsev N; Adams PD; Bieker JJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13337-42. PubMed ID: 25197097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KLF1 mutation E325K induces cell cycle arrest in erythroid cells differentiated from congenital dyserythropoietic anemia patient-specific induced pluripotent stem cells.
    Kohara H; Utsugisawa T; Sakamoto C; Hirose L; Ogawa Y; Ogura H; Sugawara A; Liao J; Aoki T; Iwasaki T; Asai T; Doisaki S; Okuno Y; Muramatsu H; Abe T; Kurita R; Miyamoto S; Sakuma T; Shiba M; Yamamoto T; Ohga S; Yoshida K; Ogawa S; Ito E; Kojima S; Kanno H; Tani K
    Exp Hematol; 2019 May; 73():25-37.e8. PubMed ID: 30876823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.
    Pilon AM; Arcasoy MO; Dressman HK; Vayda SE; Maksimova YD; Sangerman JI; Gallagher PG; Bodine DM
    Mol Cell Biol; 2008 Dec; 28(24):7394-401. PubMed ID: 18852285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq.
    Tallack MR; Magor GW; Dartigues B; Sun L; Huang S; Fittock JM; Fry SV; Glazov EA; Bailey TL; Perkins AC
    Genome Res; 2012 Dec; 22(12):2385-98. PubMed ID: 22835905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis.
    Nébor D; Graber JH; Ciciotte SL; Robledo RF; Papoin J; Hartman E; Gillinder KR; Perkins AC; Bieker JJ; Blanc L; Peters LL
    Sci Rep; 2018 Aug; 8(1):12793. PubMed ID: 30143664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mouse KLF1 Nan variant impairs nuclear condensation and erythroid maturation.
    Cantú I; van de Werken HJG; Gillemans N; Stadhouders R; Heshusius S; Maas A; Esteghamat F; Ozgur Z; van IJcken WFJ; Grosveld F; von Lindern M; Philipsen S; van Dijk TB
    PLoS One; 2019; 14(3):e0208659. PubMed ID: 30921348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of tissue-specific promoter DNA methylation in regulating the human EKLF gene.
    Li Y; Liu D; Li Z; Zhang X; Ye Y; Liu Q; Shen J; Chen Z; Huang H; Liang Y; Han X; Liu J; An X; Mohandas N; Xu X
    Blood Cells Mol Dis; 2018 Jul; 71():16-22. PubMed ID: 29475801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells.
    Lohmann F; Dangeti M; Soni S; Chen X; Planutis A; Baron MH; Choi K; Bieker JJ
    Mol Cell Biol; 2015 Nov; 35(21):3726-38. PubMed ID: 26303528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey and evaluation of mutations in the human KLF1 transcription unit.
    Gnanapragasam MN; Crispino JD; Ali AM; Weinberg R; Hoffman R; Raza A; Bieker JJ
    Sci Rep; 2018 Apr; 8(1):6587. PubMed ID: 29700354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multifunctional role of EKLF/KLF1 during erythropoiesis.
    Siatecka M; Bieker JJ
    Blood; 2011 Aug; 118(8):2044-54. PubMed ID: 21613252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination.
    Yien YY; Bieker JJ
    Mol Cell Biol; 2013 Jan; 33(1):4-13. PubMed ID: 23090966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Krüppel-like transcription factors KLF1 and KLF2 have unique and coordinate roles in regulating embryonic erythroid precursor maturation.
    Vinjamur DS; Wade KJ; Mohamad SF; Haar JL; Sawyer ST; Lloyd JA
    Haematologica; 2014 Oct; 99(10):1565-73. PubMed ID: 25150253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation.
    Siatecka M; Lohmann F; Bao S; Bieker JJ
    Mol Cell Biol; 2010 Jun; 30(11):2811-22. PubMed ID: 20368355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPS2 promotes erythroid differentiation by control of the stability of EKLF protein.
    Ma WB; Wang XH; Li CY; Tian HH; Zhang J; Bi JJ; Ren GM; Tao SS; Liu X; Zhang W; Li DX; Chen H; Zhan YQ; Yu M; Ge CH; Yang XM; Yin RH
    Blood; 2020 Jun; 135(25):2302-2315. PubMed ID: 32384137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the mechanisms of mammalian erythroid chromatin condensation and enucleation.
    Ji P
    Int Rev Cell Mol Biol; 2015; 316():159-82. PubMed ID: 25805124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin condensation during terminal erythropoiesis.
    Zhao B; Yang J; Ji P
    Nucleus; 2016 Sep; 7(5):425-429. PubMed ID: 27579498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.