These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28157897)

  • 21. High resolution optical frequency domain reflectometry for characterization of components and assemblies.
    Soller B; Gifford D; Wolfe M; Froggatt M
    Opt Express; 2005 Jan; 13(2):666-74. PubMed ID: 19488398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-domain optical reflectometry measurements using a frequency comb interferometer.
    Taurand G; Giaccari P; Deschênes JD; Genest J
    Appl Opt; 2010 Aug; 49(23):4413-9. PubMed ID: 20697444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical frequency domain reflectometry based on real-time Fourier transformation.
    Park Y; Ahn TJ; Kieffer JC; Azaña J
    Opt Express; 2007 Apr; 15(8):4597-616. PubMed ID: 19532706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry.
    Ohno S; Iida D; Toge K; Manabe T
    Opt Express; 2016 Aug; 24(17):19651-60. PubMed ID: 27557243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the Performance of Functionalized Carbon Structures with Integrated Optical Fiber Sensors under Practical Conditions.
    Bremer K; Alwis LSM; Weigand F; Kuhne M; Zheng Y; Krüger M; Helbig R; Roth B
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30441772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Spatially Distributed Fiber-Optic Temperature Sensor for Applications in the Steel Industry.
    Roman M; Balogun D; Zhuang Y; Gerald RE; Bartlett L; O'Malley RJ; Huang J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OFDR shape sensor based on a femtosecond-laser-inscribed weak fiber Bragg grating array in a multicore fiber.
    Fu C; Xiao S; Meng Y; Shan R; Liang W; Zhong H; Liao C; Yin X; Wang Y
    Opt Lett; 2024 Mar; 49(5):1273-1276. PubMed ID: 38426991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Method for Measurement of Nonlinearity of Laser Interferometer Based on Optical Frequency Tuning.
    Zhu Z; Fu X; Ren D; Wan Y; Wang J
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process.
    Wang B; Fan X; Wang S; Du J; He Z
    Opt Express; 2017 Feb; 25(4):3514-3524. PubMed ID: 28241565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-parameter measurement of a multi-point high-frequency vibration signal in an OFDR system.
    Song M; Chen G; Cui E; Yuxin Z
    Appl Opt; 2022 Jul; 61(19):5675-5680. PubMed ID: 36255797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic optical frequency domain reflectometry.
    Arbel D; Eyal A
    Opt Express; 2014 Apr; 22(8):8823-30. PubMed ID: 24787772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compact multifunction digital OFDR system without using an auxiliary interferometer.
    Yao Z; Mauldin T; Xu Z; Hefferman G; Wei T
    Appl Opt; 2021 Sep; 60(25):7523-7529. PubMed ID: 34613217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.
    Ahn T; Moon S; Youk Y; Jung Y; Oh K; Kim D
    Opt Express; 2005 May; 13(11):4005-11. PubMed ID: 19495311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range.
    Liu Q; Fan X; He Z
    Opt Express; 2015 Oct; 23(20):25988-95. PubMed ID: 26480114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breaking limitations of fiber identification in traditional OFDR systems via compensation of initial optical frequency instability.
    Yao Z; Mauldin T; Xu Z; Hefferman G; Wei T
    Opt Lett; 2020 Nov; 45(21):6086-6089. PubMed ID: 33137075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Optical Frequency Domain Reflectometer's (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing.
    Belokrylov ME; Kambur DA; Konstantinov YA; Claude D; Barkov FL
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation.
    Ahn TJ; Lee JY; Kim DY
    Appl Opt; 2005 Dec; 44(35):7630-4. PubMed ID: 16363788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distributed sparse signal sensing based on compressive sensing OFDR.
    Qu S; Qin Z; Xu Y; Liu Z; Cong Z; Wang H; Li Z
    Opt Lett; 2020 Jun; 45(12):3288-3291. PubMed ID: 32538964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-spatial-resolution distributed acoustic sensor based on the time-frequency-multiplexing OFDR.
    Zhong Z; Liu T; Wu H; Qiu J; Du B; Yin G; Zhu T
    Opt Lett; 2023 Nov; 48(21):5803-5806. PubMed ID: 37910763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dispersion matching of sample and reference arms in optical frequency domain reflectometry-optical coherence tomography using a dispersion-shifted fiber.
    Asaka K; Ohbayashi K
    Opt Express; 2007 Apr; 15(8):5030-42. PubMed ID: 19532752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.