These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28157932)

  • 1. Ion-photon entanglement and quantum frequency conversion with trapped Ba
    Siverns JD; Li X; Quraishi Q
    Appl Opt; 2017 Jan; 56(3):B222-B230. PubMed ID: 28157932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion.
    Bock M; Eich P; Kucera S; Kreis M; Lenhard A; Becher C; Eschner J
    Nat Commun; 2018 May; 9(1):1998. PubMed ID: 29784941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Rate, High-Fidelity Entanglement of Qubits Across an Elementary Quantum Network.
    Stephenson LJ; Nadlinger DP; Nichol BC; An S; Drmota P; Ballance TG; Thirumalai K; Goodwin JF; Lucas DM; Ballance CJ
    Phys Rev Lett; 2020 Mar; 124(11):110501. PubMed ID: 32242699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High purity single photons entangled with an atomic qubit.
    Crocker C; Lichtman M; Sosnova K; Carter A; Scarano S; Monroe C
    Opt Express; 2019 Sep; 27(20):28143-28149. PubMed ID: 31684572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of slow light in rubidium vapor using single photons from a trapped ion.
    Siverns JD; Hannegan J; Quraishi Q
    Sci Adv; 2019 Oct; 5(10):eaav4651. PubMed ID: 31620552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion.
    Walker T; Miyanishi K; Ikuta R; Takahashi H; Vartabi Kashanian S; Tsujimoto Y; Hayasaka K; Yamamoto T; Imoto N; Keller M
    Phys Rev Lett; 2018 May; 120(20):203601. PubMed ID: 29864312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond.
    Blok MS; Kalb N; Reiserer A; Taminiau TH; Hanson R
    Faraday Discuss; 2015; 184():173-82. PubMed ID: 26411802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A photonic quantum information interface.
    Tanzilli S; Tittel W; Halder M; Alibart O; Baldi P; Gisin N; Zbinden H
    Nature; 2005 Sep; 437(7055):116-20. PubMed ID: 16136138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of entanglement between a single trapped atom and a single photon.
    Blinov BB; Moehring DL; Duan L; Monroe C
    Nature; 2004 Mar; 428(6979):153-7. PubMed ID: 15014494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multispecies Trapped-Ion Node for Quantum Networking.
    Inlek IV; Crocker C; Lichtman M; Sosnova K; Monroe C
    Phys Rev Lett; 2017 Jun; 118(25):250502. PubMed ID: 28696766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement of Trapped-Ion Qubits Separated by 230 Meters.
    Krutyanskiy V; Galli M; Krcmarsky V; Baier S; Fioretto DA; Pu Y; Mazloom A; Sekatski P; Canteri M; Teller M; Schupp J; Bate J; Meraner M; Sangouard N; Lanyon BP; Northup TE
    Phys Rev Lett; 2023 Feb; 130(5):050803. PubMed ID: 36800448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heralded entanglement between solid-state qubits separated by three metres.
    Bernien H; Hensen B; Pfaff W; Koolstra G; Blok MS; Robledo L; Taminiau TH; Markham M; Twitchen DJ; Childress L; Hanson R
    Nature; 2013 May; 497(7447):86-90. PubMed ID: 23615617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.
    Albrecht B; Farrera P; Fernandez-Gonzalvo X; Cristiani M; de Riedmatten H
    Nat Commun; 2014 Feb; 5():3376. PubMed ID: 24572696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entanglement between a Telecom Photon and an On-Demand Multimode Solid-State Quantum Memory.
    Rakonjac JV; Lago-Rivera D; Seri A; Mazzera M; Grandi S; de Riedmatten H
    Phys Rev Lett; 2021 Nov; 127(21):210502. PubMed ID: 34860116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
    De Greve K; Yu L; McMahon PL; Pelc JS; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y
    Nature; 2012 Nov; 491(7424):421-5. PubMed ID: 23151585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of a BDCZ quantum repeater node.
    Yuan ZS; Chen YA; Zhao B; Chen S; Schmiedmayer J; Pan JW
    Nature; 2008 Aug; 454(7208):1098-101. PubMed ID: 18756253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength.
    van Leent T; Bock M; Garthoff R; Redeker K; Zhang W; Bauer T; Rosenfeld W; Becher C; Weinfurter H
    Phys Rev Lett; 2020 Jan; 124(1):010510. PubMed ID: 31976687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum storage of photonic entanglement in a crystal.
    Clausen C; Usmani I; Bussières F; Sangouard N; Afzelius M; de Riedmatten H; Gisin N
    Nature; 2011 Jan; 469(7331):508-11. PubMed ID: 21228774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.
    Yu L; Natarajan CM; Horikiri T; Langrock C; Pelc JS; Tanner MG; Abe E; Maier S; Schneider C; Höfling S; Kamp M; Hadfield RH; Fejer MM; Yamamoto Y
    Nat Commun; 2015 Nov; 6():8955. PubMed ID: 26597223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.