These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28157945)

  • 1. Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns.
    Feng S; Chen Q; Zuo C; Tao T; Hu Y; Asundi A
    Opt Express; 2017 Jan; 25(2):540-559. PubMed ID: 28157945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional trace measurements for fast-moving objects using binary-encoded fringe projection techniques.
    Su WH; Kuo CY; Kao FJ
    Appl Opt; 2014 Aug; 53(24):5283-9. PubMed ID: 25321097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time high dynamic range 3D measurement using fringe projection.
    Zhang L; Chen Q; Zuo C; Feng S
    Opt Express; 2020 Aug; 28(17):24363-24378. PubMed ID: 32906978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing.
    Zuo C; Chen Q; Feng S; Feng F; Gu G; Sui X
    Appl Opt; 2012 Jul; 51(19):4477-90. PubMed ID: 22772122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High dynamic range 3D shape measurement based on the intensity response function of a camera.
    Zhang L; Chen Q; Zuo C; Feng S
    Appl Opt; 2018 Feb; 57(6):1378-1386. PubMed ID: 29469839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed and high-accuracy 3D surface measurement using a mechanical projector.
    Hyun JS; Chiu GT; Zhang S
    Opt Express; 2018 Jan; 26(2):1474-1487. PubMed ID: 29402021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal defocus selection based on normed Fourier transform for digital fringe pattern profilometry.
    Kamagara A; Wang X; Li S
    Appl Opt; 2017 Oct; 56(28):8014-8022. PubMed ID: 29047791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Binocular Fringe Dynamic Projection Method for High Dynamic Range Measurement.
    Yu C; Ji F; Xue J; Wang Y
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defocusing parameter selection strategies based on PSF measurement for square-binary defocusing fringe projection profilometry.
    Wang Y; Zhao H; Jiang H; Li X
    Opt Express; 2018 Aug; 26(16):20351-20367. PubMed ID: 30119346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion-induced error reduction for binary defocusing profilometry via additional temporal sampling.
    Wang Y; Suresh V; Li B
    Opt Express; 2019 Aug; 27(17):23948-23958. PubMed ID: 31510291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement.
    Heist S; Kühmstedt P; Tünnermann A; Notni G
    Appl Opt; 2015 Dec; 54(35):10541-51. PubMed ID: 26836883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-shot 3D shape measurement of discontinuous objects based on a coaxial fringe projection system.
    Wang Z; Zhang Z; Gao N; Xiao Y; Gao F; Jiang X
    Appl Opt; 2019 Feb; 58(5):A169-A178. PubMed ID: 30873975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.
    Lin H; Gao J; Mei Q; He Y; Liu J; Wang X
    Opt Express; 2016 Apr; 24(7):7703-18. PubMed ID: 27137056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient intensity-based fringe projection profilometry method resistant to global illumination.
    Deng J; Li J; Feng H; Ding S; Xiao Y; Han W; Zeng Z
    Opt Express; 2020 Nov; 28(24):36346-36360. PubMed ID: 33379730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High dynamic defocus response method for binary defocusing fringe projection profilometry.
    Zheng Z; Gao J; Zhuang Y; Zhang L; Chen X
    Opt Lett; 2021 Aug; 46(15):3749-3752. PubMed ID: 34329272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate 3D Reconstruction of Dynamic Objects by Spatial-Temporal Multiplexing and Motion-Induced Error Elimination.
    Sui C; He K; Lyu C; Liu YH
    IEEE Trans Image Process; 2022; 31():2106-2121. PubMed ID: 35167454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GOBO projection for 3D measurements at highest frame rates: a performance analysis.
    Heist S; Dietrich P; Landmann M; Kühmstedt P; Notni G; Tünnermann A
    Light Sci Appl; 2018; 7():71. PubMed ID: 30302242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed three-dimensional measurement technique for object surface with a large range of reflectivity variations.
    Wang J; Yang Y
    Appl Opt; 2018 Oct; 57(30):9172-9182. PubMed ID: 30461907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disparity Surface Reconstruction Based on a Stereo Light Microscope and Laser Fringes.
    Wang Y
    Microsc Microanal; 2018 Oct; 24(5):503-516. PubMed ID: 30277181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approach to improve the accuracy of 3-D shape measurement of moving object using phase shifting profilometry.
    Lu L; Xi J; Yu Y; Guo Q
    Opt Express; 2013 Dec; 21(25):30610-22. PubMed ID: 24514637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.