These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28157948)

  • 1. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators.
    Liu X; Sun C; Xiong B; Wang L; Wang J; Han Y; Hao Z; Li H; Luo Y; Yan J; Wei T; Zhang Y; Wang J
    Opt Express; 2017 Jan; 25(2):587-594. PubMed ID: 28157948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh Q microring resonators using a single-crystal aluminum-nitride-on-sapphire platform.
    Sun Y; Shin W; Laleyan DA; Wang P; Pandey A; Liu X; Wu Y; Soltani M; Mi Z
    Opt Lett; 2019 Dec; 44(23):5679-5682. PubMed ID: 31774752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation.
    Liu J; Weng H; Afridi AA; Li J; Dai J; Ma X; Long H; Zhang Y; Lu Q; Donegan JF; Guo W
    Opt Express; 2020 Jun; 28(13):19270-19280. PubMed ID: 32672207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum.
    Lu TJ; Fanto M; Choi H; Thomas P; Steidle J; Mouradian S; Kong W; Zhu D; Moon H; Berggren K; Kim J; Soltani M; Preble S; Englund D
    Opt Express; 2018 Apr; 26(9):11147-11160. PubMed ID: 29716039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stokes and anti-Stokes Raman scatterings from frequency comb lines in poly-crystalline aluminum nitride microring resonators.
    Jung H; Gong Z; Liu X; Guo X; Zou CL; Tang HX
    Opt Express; 2019 Aug; 27(16):22246-22253. PubMed ID: 31510521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics.
    Stassen E; Pu M; Semenova E; Zavarin E; Lundin W; Yvind K
    Opt Lett; 2019 Mar; 44(5):1064-1067. PubMed ID: 30821771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics.
    Ye Z; Fülöp A; Helgason ÓB; Andrekson PA; Torres-Company V
    Opt Lett; 2019 Jul; 44(13):3326-3329. PubMed ID: 31259952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact silicon microring resonators with ultra-low propagation loss in the C band.
    Xiao S; Khan MH; Shen H; Qi M
    Opt Express; 2007 Oct; 15(22):14467-75. PubMed ID: 19550724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics.
    Xie W; Chang L; Shu H; Norman JC; Peters JD; Wang X; Bowers JE
    Opt Express; 2020 Oct; 28(22):32894-32906. PubMed ID: 33114964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum nitride integration on silicon nitride photonic circuits: a hybrid approach towards on-chip nonlinear optics.
    Terrasanta G; Sommer T; Müller M; Althammer M; Gross R; Poot M
    Opt Express; 2022 Mar; 30(6):8537-8549. PubMed ID: 35299305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Octave-spanning Kerr frequency comb generation with stimulated Raman scattering in an AlN microresonator.
    Weng H; Liu J; Afridi AA; Li J; Dai J; Ma X; Zhang Y; Lu Q; Donegan JF; Guo W
    Opt Lett; 2021 Feb; 46(3):540-543. PubMed ID: 33528404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring.
    Liu X; Sun C; Xiong B; Wang J; Wang L; Han Y; Hao Z; Li H; Luo Y; Yan J; Wei TB; Zhang Y; Wang J
    Opt Lett; 2016 Aug; 41(15):3599-602. PubMed ID: 27472628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental linewidth of an AlN microcavity Raman laser.
    Liu K; Yao S; Ding Y; Wang Z; Guo Y; Yan J; Wang J; Yang C; Bao C
    Opt Lett; 2022 Sep; 47(17):4295-4298. PubMed ID: 36048637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator.
    Ottaviano L; Pu M; Semenova E; Yvind K
    Opt Lett; 2016 Sep; 41(17):3996-9. PubMed ID: 27607956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Q, submicron-confined chalcogenide microring resonators.
    Yang Z; Zhang R; Wang Z; Xu P; Zhang W; Kang Z; Zheng J; Dai S; Wang R; Majumdar A
    Opt Express; 2021 Oct; 29(21):33225-33233. PubMed ID: 34809138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address a rubidium two-photon clock transition.
    Surya JB; Guo X; Zou CL; Tang HX
    Opt Lett; 2018 Jun; 43(11):2696-2699. PubMed ID: 29856370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thulium-doped tellurium oxide waveguide amplifier with 7.6  dB net gain on a silicon nitride chip.
    Kiani KM; Frankis HC; Mbonde HM; Mateman R; Leinse A; Knights AP; Bradley JDB
    Opt Lett; 2019 Dec; 44(23):5788-5791. PubMed ID: 31774780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO
    Li G; Fu M; Zheng Y; Guan X
    Opt Lett; 2020 Sep; 45(18):5012-5015. PubMed ID: 32932440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow-loss tightly confining Si
    El Dirani H; Youssef L; Petit-Etienne C; Kerdiles S; Grosse P; Monat C; Pargon E; Sciancalepore C
    Opt Express; 2019 Oct; 27(21):30726-30740. PubMed ID: 31684316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Q tellurium-oxide-coated silicon nitride microring resonators.
    Frankis HC; Kiani KM; Su D; Mateman R; Leinse A; Bradley JDB
    Opt Lett; 2019 Jan; 44(1):118-121. PubMed ID: 30645557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.