These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28157949)

  • 21. Modified constellation reshaping method for PAPR reduction of PDM CO-OFDM based on a SLM algorithm.
    Zou W; Huang T; Yuan J; Wang D; Li X; Cheng Z
    Appl Opt; 2019 Mar; 58(7):1800-1807. PubMed ID: 30874214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical OFDM for SiPM-Based Underwater Optical Wireless Communication Links.
    Essalih T; Khalighi MA; Hranilovic S; Akhouayri H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical and experimental evaluation of clipping and quantization noise for optical OFDM.
    Berger CR; Benlachtar Y; Killey RI; Milder PA
    Opt Express; 2011 Aug; 19(18):17713-28. PubMed ID: 21935139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filtered-orthogonal wavelet division multiplexing (F-OWDM) technique for 5G and beyond communication systems.
    Almutairi AF; Krishna A
    Sci Rep; 2022 Mar; 12(1):4607. PubMed ID: 35301343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance analysis of different intensity modulation techniques over atmospheric turbulent free-space optical channels.
    Abdelhak SS; Morra AE; Abd El-Samie FE; Elfiqi AE
    J Opt Soc Am A Opt Image Sci Vis; 2020 Nov; 37(11):C138-C145. PubMed ID: 33175743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple peak-to-average power ratio reduction scheme for all optical orthogonal frequency division multiplexing systems with intensity modulation and direct detection.
    Liang X; Li W; Ma W; Wang K
    Opt Express; 2009 Aug; 17(18):15614-22. PubMed ID: 19724560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-complexity recombined SLM scheme for PAPR reduction in IM/DD optical OFDM systems.
    Wu Y; He C; Zhang Q; Sun Y; Wang T
    Opt Express; 2018 Nov; 26(24):32237-32247. PubMed ID: 30650687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FDSS-Based DFT-s-OFDM for 6G Wireless Sensing.
    Chen L; Pan J; Zhang J; Cheng J; Xu L; Ye N
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimized intensity-modulated type PTS-based PAPR reduction scheme for intensity-modulated direct-detection optical OFDM systems.
    Ji R; Liu B; Ren J; Mao Y; Wu X; Wu Y; Zhao L; Sun T; Ullah R
    Opt Express; 2023 Mar; 31(6):10596-10616. PubMed ID: 37157603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. When high PAPR reduction meets CNN: A PRD framework.
    Yang Y; Wei X; Xu R; Peng L
    Math Biosci Eng; 2021 Jun; 18(5):5309-5320. PubMed ID: 34517489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.
    Yang Q; He Z; Yang Z; Yu S; Yi X; Shieh W
    Opt Express; 2012 Jan; 20(3):2379-85. PubMed ID: 22330476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interleaved and partial transmission interleaved optical coherent orthogonal frequency division multiplexing.
    Cao Z; van den Boom HP; Tangdiongga E; Koonen T
    Opt Lett; 2014 Apr; 39(7):2179-82. PubMed ID: 24686705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Logistic-function-based nonlinear companding transform for asymmetrical hybrid optical orthogonal frequency division multiplexing visible light communications systems.
    Zhang T; Zou Y; Sun JN; Qiao S
    Appl Opt; 2018 Nov; 57(31):9480-9487. PubMed ID: 30461996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrete Hartley transform-based dual-mode index modulation OFDM for visible light communications.
    Xu XY; Zhang Q; Yue DW
    Appl Opt; 2023 Nov; 62(31):8442-8450. PubMed ID: 38037950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser.
    Li F; Yu J; Fang Y; Dong Z; Li X; Chen L
    Opt Express; 2014 Apr; 22(7):8742-8. PubMed ID: 24718244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance enhancement of LACO-OFDM BER and PAPR using a K-means algorithm for a VLC system.
    Mohd Nordin J; Abdalmunam Hameed A; Safar A; Nawawi N
    Appl Opt; 2023 Nov; 62(31):8342-8347. PubMed ID: 38037938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning for DCO-OFDM based LiFi.
    Purnita KS; Mondal MRH
    PLoS One; 2021; 16(11):e0259955. PubMed ID: 34813606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized DFT-spread OFDM based visible light communications with multiple lighting sources.
    Wu ZY; Gao YL; Wang ZK; You C; Yang C; Luo C; Wang J
    Opt Express; 2017 Oct; 25(22):26468-26482. PubMed ID: 29092136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Layered antisymmetry-constructed clipped optical OFDM for low-complexity VLC systems.
    Bai R; Hranilovic S
    Opt Express; 2021 Mar; 29(7):10613-10630. PubMed ID: 33820193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secure OFDM with Peak-to-Average Power Ratio Reduction Using the Spectral Phase of Chaotic Signals.
    Haroun MF; Gulliver TA
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.