These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 28157989)

  • 1. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.
    Pozzi P; Wilding D; Soloviev O; Verstraete H; Bliek L; Vdovin G; Verhaegen M
    Opt Express; 2017 Jan; 25(2):949-959. PubMed ID: 28157989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.
    Dong B; Li Y; Han XL; Hu B
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
    Antonello J; van Werkhoven T; Verhaegen M; Truong HH; Keller CU; Gerritsen HC
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1337-47. PubMed ID: 24977374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large field of view aberrations correction with deformable lenses and multi conjugate adaptive optics.
    Furieri T; Bassi A; Bonora S
    J Biophotonics; 2023 Dec; 16(12):e202300104. PubMed ID: 37556187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.
    Fraisier V; Clouvel G; Jasaitis A; Dimitrov A; Piolot T; Salamero J
    J Microsc; 2015 Sep; 259(3):219-27. PubMed ID: 25940062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based adaptive optics for light sheet fluorescence microscopy.
    Rai MR; Li C; Ghashghaei HT; Greenbaum A
    Biomed Opt Express; 2023 Jun; 14(6):2905-2919. PubMed ID: 37342701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.
    Shaw M; Hall S; Knox S; Stevens R; Paterson C
    Opt Express; 2010 Mar; 18(7):6900-13. PubMed ID: 20389710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of shift-less aberration bases for sensorless adaptive optics in nonlinear microscopy.
    Talone B; Pozzi P; Cavagnini M; Polli D; Pozzi G; Mapelli J
    Opt Express; 2021 Nov; 29(23):37617-37627. PubMed ID: 34808830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A demonstration of the effectiveness of a single aberration correction per optical slice in beam scanned optically sectioning microscopes.
    Poland SP; Wright AJ; Cobb S; Vijverberg JC; Girkin JM
    Micron; 2011 Jun; 42(4):318-23. PubMed ID: 20932768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope.
    Hussain SA; Kubo T; Hall N; Gala D; Hampson K; Parton R; Phillips MA; Wincott M; Fujita K; Davis I; Dobbie I; Booth MJ
    J Microsc; 2022 Nov; 288(2):106-116. PubMed ID: 33128278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of a sensorless adaptive optics multiphoton microscope.
    Skorsetz M; Artal P; Bueno JM
    J Microsc; 2016 Mar; 261(3):249-58. PubMed ID: 26469361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the metric in sensorless adaptive optical microscopy with fluorescence fluctuations.
    Gallagher J; Delon A; Moreau P; Wang I
    Opt Express; 2017 Jun; 25(13):15558-15571. PubMed ID: 28788978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics.
    Ren M; Chen J; Chen D; Chen SC
    Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavefront-coding technique for inexpensive and robust retinal imaging.
    Arines J; Hernandez RO; Sinzinger S; Grewe A; Acosta E
    Opt Lett; 2014 Jul; 39(13):3986-8. PubMed ID: 24978788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational adaptive holographic fluorescence microscopy based on the stochastic parallel gradient descent algorithm.
    Zhang W; Man T; Zhang M; Zhang L; Wan Y
    Biomed Opt Express; 2022 Dec; 13(12):6431-6442. PubMed ID: 36589573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.
    Martial FP; Hartell NA
    PLoS One; 2012; 7(8):e43942. PubMed ID: 22937130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully refractive adaptive optics fluorescence microscope using an optofluidic wavefront modulator.
    Rajaeipour P; Dorn A; Banerjee K; Zappe H; Ataman Ç
    Opt Express; 2020 Mar; 28(7):9944-9956. PubMed ID: 32225593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.