These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28158015)

  • 1. High-order corrections on the laser cooling limit in the Lamb-Dicke regime.
    Yi Z; Gu WJ
    Opt Express; 2017 Jan; 25(2):1314-1325. PubMed ID: 28158015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground-state cooling for a trapped atom using cavity-induced double electromagnetically induced transparency.
    Yi Z; Gu WJ; Li GX
    Opt Express; 2013 Feb; 21(3):3445-62. PubMed ID: 23481803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities.
    Yang JY; Wang DY; Bai CH; Guan SY; Gao XY; Zhu AD; Wang HF
    Opt Express; 2019 Aug; 27(16):22855-22867. PubMed ID: 31510570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and robust laser cooling of trapped systems.
    Cerrillo J; Retzker A; Plenio MB
    Phys Rev Lett; 2010 Jan; 104(4):043003. PubMed ID: 20366705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-Electromagnetically-Induced-Transparency Ground-State Cooling of Stationary Two-Dimensional Ion Crystals.
    Qiao M; Wang Y; Cai Z; Du B; Wang P; Luan C; Chen W; Noh HR; Kim K
    Phys Rev Lett; 2021 Jan; 126(2):023604. PubMed ID: 33512231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapped ion quantum computation with transverse phonon modes.
    Zhu SL; Monroe C; Duan LM
    Phys Rev Lett; 2006 Aug; 97(5):050505. PubMed ID: 17026088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of non-classical states of mirror motion in the single-photon strong-coupling regime.
    Gu WJ; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Jul; 22(15):18254-67. PubMed ID: 25089445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.
    Zhang JQ; Zhang S; Zou JH; Chen L; Yang W; Li Y; Feng M
    Opt Express; 2013 Dec; 21(24):29695-710. PubMed ID: 24514521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].
    Xiao JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):598-601. PubMed ID: 19455781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference.
    Xia K; Evers J
    Phys Rev Lett; 2009 Nov; 103(22):227203. PubMed ID: 20366124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature gradient driven lasing and stimulated cooling.
    Sandner K; Ritsch H
    Phys Rev Lett; 2012 Nov; 109(19):193601. PubMed ID: 23215382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Ground-State Cooling of Large Trapped-Ion Chains with an Electromagnetically-Induced-Transparency Tripod Scheme.
    Feng L; Tan WL; De A; Menon A; Chu A; Pagano G; Monroe C
    Phys Rev Lett; 2020 Jul; 125(5):053001. PubMed ID: 32794882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the Dicke lattice model and quantum phase transitions using an array of coupled resonators.
    Leng SY; Lü DY; Yang SL; Ma M; Dong YZ; Zhou BF; Zhou Y
    J Phys Condens Matter; 2022 Aug; 34(41):. PubMed ID: 35896108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Sisyphus Cooling of Trapped Ions.
    Ejtemaee S; Haljan PC
    Phys Rev Lett; 2017 Jul; 119(4):043001. PubMed ID: 29341732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling Exciton-Phonon Interactions via Electromagnetically Induced Transparency.
    Walther V; Grünwald P; Pohl T
    Phys Rev Lett; 2020 Oct; 125(17):173601. PubMed ID: 33156663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetically Induced Transparency Cooling of High-Nuclear-Spin Ions.
    Huang C; Wang C; Zhang H; Hu H; Wang Z; Mao Z; Li S; Hou P; Wu Y; Zhou Z; Duan L
    Phys Rev Lett; 2024 Sep; 133(11):113204. PubMed ID: 39331985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom.
    He X; Yu S; Xu P; Wang J; Zhan M
    Opt Express; 2012 Feb; 20(4):3711-24. PubMed ID: 22418129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-lived mesoscopic entanglement outside the Lamb-Dicke regime.
    McDonnell MJ; Home JP; Lucas DM; Imreh G; Keitch BC; Szwer DJ; Thomas NR; Webster SC; Stacey DN; Steane AM
    Phys Rev Lett; 2007 Feb; 98(6):063603. PubMed ID: 17358940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.