These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28158724)

  • 1. The marine sulfate reducer Desulfobacterium autotrophicum HRM2 can switch between low and high apparent half-saturation constants for dissimilatory sulfate reduction.
    Tarpgaard IH; Jørgensen BB; Kjeldsen KU; Røy H
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28158724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide.
    Strittmatter AW; Liesegang H; Rabus R; Decker I; Amann J; Andres S; Henne A; Fricke WF; Martinez-Arias R; Bartels D; Goesmann A; Krause L; Pühler A; Klenk HP; Richter M; Schüler M; Glöckner FO; Meyerdierks A; Gottschalk G; Amann R
    Environ Microbiol; 2009 May; 11(5):1038-55. PubMed ID: 19187283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential proteomic analysis of the metabolic network of the marine sulfate-reducer Desulfobacterium autotrophicum HRM2.
    Dörries M; Wöhlbrand L; Rabus R
    Proteomics; 2016 Nov; 16(22):2878-2893. PubMed ID: 27701823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to substrate limitation by a marine sulfate-reducing bacterium.
    Marietou A; Kjeldsen KU; Glombitza C; Jørgensen BB
    ISME J; 2022 Jan; 16(1):200-210. PubMed ID: 34285365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-dependent regulation of carbon catabolism in marine sulfate-reducing Desulfobacterium autotrophicum HRM2.
    Amann J; Lange D; Schüler M; Rabus R
    J Mol Microbiol Biotechnol; 2010; 18(2):74-84. PubMed ID: 20110731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.
    Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M
    Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable carbon isotope fractionation by sulfate-reducing bacteria.
    Londry KL; Des Marais DJ
    Appl Environ Microbiol; 2003 May; 69(5):2942-9. PubMed ID: 12732570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrotrophic activity and electrosynthetic acetate production by Desulfobacterium autotrophicum HRM2.
    Zaybak Z; Logan BE; Pisciotta JM
    Bioelectrochemistry; 2018 Oct; 123():150-155. PubMed ID: 29753938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea.
    Mussmann M; Ishii K; Rabus R; Amann R
    Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation.
    Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB
    Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum.
    Rabus R; Brüchert V; Amann J; Könneke M
    FEMS Microbiol Ecol; 2002 Dec; 42(3):409-17. PubMed ID: 19709300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.
    Kraft B; Engelen B; Goldhammer T; Lin YS; Cypionka H; Könneke M
    FEMS Microbiol Ecol; 2013 Apr; 84(1):86-97. PubMed ID: 23157459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments.
    Robador A; Brüchert V; Jørgensen BB
    Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria.
    Spear JR; Figueroa LA; Honeyman BD
    Appl Environ Microbiol; 2000 Sep; 66(9):3711-21. PubMed ID: 10966381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium.
    Wöhlbrand L; Jacob JH; Kube M; Mussmann M; Jarling R; Beck A; Amann R; Wilkes H; Reinhardt R; Rabus R
    Environ Microbiol; 2013 May; 15(5):1334-55. PubMed ID: 23088741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno).
    Schubert CJ; Vazquez F; Lösekann-Behrens T; Knittel K; Tonolla M; Boetius A
    FEMS Microbiol Ecol; 2011 Apr; 76(1):26-38. PubMed ID: 21244447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments.
    Shao D; Kang Y; Wu S; Wong MH
    Sci Total Environ; 2012 May; 424():331-6. PubMed ID: 22444059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor.
    Orsi WD; Barker Jørgensen B; Biddle JF
    Environ Microbiol Rep; 2016 Aug; 8(4):452-60. PubMed ID: 26991974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh.
    Bahr M; Crump BC; Klepac-Ceraj V; Teske A; Sogin ML; Hobbie JE
    Environ Microbiol; 2005 Aug; 7(8):1175-85. PubMed ID: 16011754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids.
    Takii S; Hanada S; Hase Y; Tamaki H; Uyeno Y; Sekiguchi Y; Matsuura K
    Int J Syst Evol Microbiol; 2008 Oct; 58(Pt 10):2433-8. PubMed ID: 18842870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.