These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28158755)

  • 21. Plasticity of the RNA kink turn structural motif.
    Antonioli AH; Cochrane JC; Lipchock SV; Strobel SA
    RNA; 2010 Apr; 16(4):762-8. PubMed ID: 20145044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting helical topologies in RNA junctions as tree graphs.
    Laing C; Jung S; Kim N; Elmetwaly S; Zahran M; Schlick T
    PLoS One; 2013; 8(8):e71947. PubMed ID: 23991010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink-Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling.
    Esquiaqui JM; Sherman EM; Ye JD; Fanucci GE
    Biochemistry; 2016 Aug; 55(31):4295-305. PubMed ID: 27427937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of G.A hydrogen bonding in the metal ion- and protein-induced folding of a kink turn RNA.
    Turner B; Lilley DM
    J Mol Biol; 2008 Aug; 381(2):431-42. PubMed ID: 18603260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A structural database for k-turn motifs in RNA.
    Schroeder KT; McPhee SA; Ouellet J; Lilley DM
    RNA; 2010 Aug; 16(8):1463-8. PubMed ID: 20562215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The solution structural ensembles of RNA kink-turn motifs and their protein complexes.
    Shi X; Huang L; Lilley DM; Harbury PB; Herschlag D
    Nat Chem Biol; 2016 Mar; 12(3):146-52. PubMed ID: 26727239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification and Identification of Non-canonical Base Pairs and Structural Motifs.
    Sarrazin-Gendron R; WaldispĆ¼hl J; Reinharz V
    Methods Mol Biol; 2024; 2726():143-168. PubMed ID: 38780731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CompAnnotate: a comparative approach to annotate base-pairing interactions in RNA 3D structures.
    Islam S; Ge P; Zhang S
    Nucleic Acids Res; 2017 Aug; 45(14):e136. PubMed ID: 28641399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying RNA structures and interactions with a unified reduced chain representation model.
    Wang F; Xia R; Su Y; Cai P; Xu X
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127181. PubMed ID: 37793523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DotAligner: identification and clustering of RNA structure motifs.
    Smith MA; Seemann SE; Quek XC; Mattick JS
    Genome Biol; 2017 Dec; 18(1):244. PubMed ID: 29284541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using an L7Ae-Tethered, Hydroxyl Radical-Mediated Footprinting Strategy to Identify and Validate Kink-Turns in RNAs.
    Lai SM; Gopalan V
    Methods Mol Biol; 2021; 2167():147-169. PubMed ID: 32712919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library.
    Jain S; Zhu Q; Paz ASP; Schlick T
    Biochim Biophys Acta Gen Subj; 2020 Jun; 1864(6):129534. PubMed ID: 31954797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Candidates for novel RNA topologies.
    Kim N; Shiffeldrim N; Gan HH; Schlick T
    J Mol Biol; 2004 Aug; 341(5):1129-44. PubMed ID: 15321711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA kink turns to the left and to the right.
    Strobel SA; Adams PL; Stahley MR; Wang J
    RNA; 2004 Dec; 10(12):1852-4. PubMed ID: 15547133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate prediction of RNA nucleotide interactions with backbone k-tree model.
    Ding L; Xue X; LaMarca S; Mohebbi M; Samad A; Malmberg RL; Cai L
    Bioinformatics; 2015 Aug; 31(16):2660-7. PubMed ID: 25886978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A nucleobase-centered coarse-grained representation for structure prediction of RNA motifs.
    Poblete S; Bottaro S; Bussi G
    Nucleic Acids Res; 2018 Feb; 46(4):1674-1683. PubMed ID: 29272539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pipeline for computational design of novel RNA-like topologies.
    Jain S; Laederach A; Ramos SBV; Schlick T
    Nucleic Acids Res; 2018 Aug; 46(14):7040-7051. PubMed ID: 30137633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.
    Parlea LG; Sweeney BA; Hosseini-Asanjan M; Zirbel CL; Leontis NB
    Methods; 2016 Jul; 103():99-119. PubMed ID: 27125735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.