These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28158895)

  • 1. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation.
    Kasper AM; Turner DC; Martin NRW; Sharples AP
    J Cell Physiol; 2018 Mar; 233(3):1985-1998. PubMed ID: 28158895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercising Bioengineered Skeletal Muscle In Vitro: Biopsy to Bioreactor.
    Turner DC; Kasper AM; Seaborne RA; Brown AD; Close GL; Murphy M; Stewart CE; Martin NRW; Sharples AP
    Methods Mol Biol; 2019; 1889():55-79. PubMed ID: 30367409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology.
    Takahashi H; Shimizu T; Okano T
    Sci Rep; 2018 Sep; 8(1):13932. PubMed ID: 30224737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling in vivo skeletal muscle ageing in vitro using three-dimensional bioengineered constructs.
    Sharples AP; Player DJ; Martin NR; Mudera V; Stewart CE; Lewis MP
    Aging Cell; 2012 Dec; 11(6):986-95. PubMed ID: 22882433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
    Cerino G; Gaudiello E; Grussenmeyer T; Melly L; Massai D; Banfi A; Martin I; Eckstein F; Grapow M; Marsano A
    Biotechnol Bioeng; 2016 Jan; 113(1):226-36. PubMed ID: 26126766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a human skeletal micro muscle platform with pacing capabilities.
    Mills RJ; Parker BL; Monnot P; Needham EJ; Vivien CJ; Ferguson C; Parton RG; James DE; Porrello ER; Hudson JE
    Biomaterials; 2019 Apr; 198():217-227. PubMed ID: 30527761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical loading of bioengineered skeletal muscle in vitro recapitulates gene expression signatures of resistance exercise in vivo.
    Turner DC; Gorski PP; Seaborne RA; Viggars M; Murphy M; Jarvis JC; Martin NRW; Stewart CE; Sharples AP
    J Cell Physiol; 2021 Sep; 236(9):6534-6547. PubMed ID: 33586196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microphysiological system for studying contractile differences in young, active, and old, sedentary adult derived skeletal muscle cells.
    Giza S; Mojica-Santiago JA; Parafati M; Malany LK; Platt D; Schmidt CE; Coen PM; Malany S
    Aging Cell; 2022 Jul; 21(7):e13650. PubMed ID: 35653714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration.
    Rajabian N; Shahini A; Asmani M; Vydiam K; Choudhury D; Nguyen T; Ikhapoh I; Zhao R; Lei P; Andreadis ST
    Tissue Eng Part A; 2021 Jan; 27(1-2):74-86. PubMed ID: 32364045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs.
    Madden L; Juhas M; Kraus WE; Truskey GA; Bursac N
    Elife; 2015 Jan; 4():e04885. PubMed ID: 25575180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects.
    Vepkhvadze TF; Vorotnikov AV; Popov DV
    Biochemistry (Mosc); 2021 May; 86(5):597-610. PubMed ID: 33993862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents.
    Abreu P; Mendes SV; Ceccatto VM; Hirabara SM
    Life Sci; 2017 Feb; 170():33-40. PubMed ID: 27888112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations.
    Nikolić N; Görgens SW; Thoresen GH; Aas V; Eckel J; Eckardt K
    Acta Physiol (Oxf); 2017 Jul; 220(3):310-331. PubMed ID: 27863008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle.
    Khodabukus A; Madden L; Prabhu NK; Koves TR; Jackman CP; Muoio DM; Bursac N
    Biomaterials; 2019 Apr; 198():259-269. PubMed ID: 30180985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodological nine-step process to bioengineer heart muscle tissue.
    Birla RK
    Tissue Cell; 2020 Dec; 67():101425. PubMed ID: 32853859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle.
    Nedachi T; Fujita H; Kanzaki M
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1191-204. PubMed ID: 18780777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses.
    Alave Reyes-Furrer A; De Andrade S; Bachmann D; Jeker H; Steinmann M; Accart N; Dunbar A; Rausch M; Bono E; Rimann M; Keller H
    Commun Biol; 2021 Oct; 4(1):1183. PubMed ID: 34650188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional in vitro model system to study the adaptation of craniofacial skeletal muscle following mechanostimulation.
    Auluck A; Mudera V; Hunt NP; Lewis MP
    Eur J Oral Sci; 2005 Jun; 113(3):218-24. PubMed ID: 15953246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes.
    Nedachi T; Hatakeyama H; Kono T; Sato M; Kanzaki M
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E866-78. PubMed ID: 19622786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.