These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28159266)
1. Unravelling the nanostructure of strawberry fruit pectins by endo-polygalacturonase digestion and atomic force microscopy. Paniagua C; Kirby AR; Gunning AP; Morris VJ; Matas AJ; Quesada MA; Mercado JA Food Chem; 2017 Jun; 224():270-279. PubMed ID: 28159266 [TBL] [Abstract][Full Text] [Related]
2. The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening. Posé S; Kirby AR; Paniagua C; Waldron KW; Morris VJ; Quesada MA; Mercado JA Carbohydr Polym; 2015 Nov; 132():134-45. PubMed ID: 26256334 [TBL] [Abstract][Full Text] [Related]
3. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Paniagua C; Posé S; Morris VJ; Kirby AR; Quesada MA; Mercado JA Ann Bot; 2014 Oct; 114(6):1375-83. PubMed ID: 25063934 [TBL] [Abstract][Full Text] [Related]
4. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. Posé S; Paniagua C; Cifuentes M; Blanco-Portales R; Quesada MA; Mercado JA J Exp Bot; 2013 Sep; 64(12):3803-15. PubMed ID: 23873994 [TBL] [Abstract][Full Text] [Related]
5. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase. Kozioł A; Cybulska J; Pieczywek PM; Zdunek A Carbohydr Polym; 2017 Apr; 161():197-207. PubMed ID: 28189229 [TBL] [Abstract][Full Text] [Related]
6. Elucidating the role of polygalacturonase genes in strawberry fruit softening. Paniagua C; Ric-Varas P; García-Gago JA; López-Casado G; Blanco-Portales R; Muñoz-Blanco J; Schückel J; Knox JP; Matas AJ; Quesada MA; Posé S; Mercado JA J Exp Bot; 2020 Dec; 71(22):7103-7117. PubMed ID: 32856699 [TBL] [Abstract][Full Text] [Related]
7. Quantification of the amount of galacturonic acid residues in blocksequences in pectin homogalacturonan by enzymatic fingerprinting with exo- and endo-polygalacturonase II from Aspergillus niger. Limberg G; Körner R; Buchholt HC; Christensen TM; Roepstorff P; Mikkelsen JD Carbohydr Res; 2000 Jul; 327(3):321-32. PubMed ID: 10945680 [TBL] [Abstract][Full Text] [Related]
8. Structural changes in cell wall pectins during strawberry fruit development. Paniagua C; Santiago-Doménech N; Kirby AR; Gunning AP; Morris VJ; Quesada MA; Matas AJ; Mercado JA Plant Physiol Biochem; 2017 Sep; 118():55-63. PubMed ID: 28618373 [TBL] [Abstract][Full Text] [Related]
9. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Ishii T; Matsunaga T Phytochemistry; 2001 Jul; 57(6):969-74. PubMed ID: 11423143 [TBL] [Abstract][Full Text] [Related]
10. Degradation kinetics and structural characteristics of pectin under simultaneous sonochemical-enzymatic functions. Ma X; Wang W; Wang D; Ding T; Ye X; Liu D Carbohydr Polym; 2016 Dec; 154():176-85. PubMed ID: 27577908 [TBL] [Abstract][Full Text] [Related]
11. Differential metabolism of pectic galactan in tomato and strawberry fruit: detection of the LM26 branched galactan epitope in ripe strawberry fruit. Posé S; Marcus SE; Knox JP Physiol Plant; 2018 Sep; 164(1):95-105. PubMed ID: 29688577 [TBL] [Abstract][Full Text] [Related]
12. The stiffening of the cell walls observed during physiological softening of pears. Zdunek A; Kozioł A; Cybulska J; Lekka M; Pieczywek PM Planta; 2016 Feb; 243(2):519-29. PubMed ID: 26498014 [TBL] [Abstract][Full Text] [Related]
13. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Round AN; Rigby NM; MacDougall AJ; Morris VJ Carbohydr Res; 2010 Feb; 345(4):487-97. PubMed ID: 20060107 [TBL] [Abstract][Full Text] [Related]
14. An Atomic Force Microscopy Study on the Effect of β-Galactosidase, α-L-Rhamnosidase and α-L-Arabinofuranosidase on the Structure of Pectin Extracted from Apple Fruit Using Sodium Carbonate. Pieczywek PM; Cybulska J; Zdunek A Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32517129 [TBL] [Abstract][Full Text] [Related]
15. Isolation and structure elucidation of pectic polysaccharide from rose hip fruits (Rosa canina L.). Ognyanov M; Remoroza C; Schols HA; Georgiev Y; Kratchanova M; Kratchanov C Carbohydr Polym; 2016 Oct; 151():803-811. PubMed ID: 27474627 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of melting and non-melting flesh peach cultivars reveals that during fruit ripening endo-polygalacturonase (endo-PG) is mainly involved in pericarp textural changes, not in firmness reduction. Ghiani A; Onelli E; Aina R; Cocucci M; Citterio S J Exp Bot; 2011 Jul; 62(11):4043-54. PubMed ID: 21511903 [TBL] [Abstract][Full Text] [Related]
17. Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: Evidence for sub-populations in fruit parenchyma systems. Cornuault V; Posé S; Knox JP Food Chem; 2018 Apr; 246():275-285. PubMed ID: 29291850 [TBL] [Abstract][Full Text] [Related]
18. Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site. Mort A; Zheng Y; Qiu F; Nimtz M; Bell-Eunice G Carbohydr Res; 2008 May; 343(7):1212-21. PubMed ID: 18394594 [TBL] [Abstract][Full Text] [Related]
19. Isolation and structural characterization of a novel oligosaccharide from the rhamnogalacturonan of Gossypium hirsutum L. Zheng Y; Mort A Carbohydr Res; 2008 May; 343(6):1041-9. PubMed ID: 18353294 [TBL] [Abstract][Full Text] [Related]