These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 28159567)
41. A stochastic surrogate Hamiltonian approach of coherent and incoherent exciton transport in the Fenna-Matthews-Olson complex. Renaud N; Ratner MA; Mujica V J Chem Phys; 2011 Aug; 135(7):075102. PubMed ID: 21861585 [TBL] [Abstract][Full Text] [Related]
42. QM/MM modeling of environmental effects on electronic transitions of the FMO complex. Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507 [TBL] [Abstract][Full Text] [Related]
43. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films. Maćkowski S; Czechowski N; Ashraf KU; Szalkowski M; Lokstein H; Cogdell RJ; Kowalska D FEBS Lett; 2016 Aug; 590(16):2558-65. PubMed ID: 27406896 [TBL] [Abstract][Full Text] [Related]
44. Impact of Single-Point Mutations on the Excitonic Structure and Dynamics in a Fenna-Matthews-Olson Complex. Khmelnitskiy A; Reinot T; Jankowiak R J Phys Chem Lett; 2018 Jun; 9(12):3378-3386. PubMed ID: 29863366 [TBL] [Abstract][Full Text] [Related]
45. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex. Baker LA; Habershon S J Chem Phys; 2015 Sep; 143(10):105101. PubMed ID: 26374060 [TBL] [Abstract][Full Text] [Related]
46. On Excitation Energy Transfer within the Baseplate BChl Jassas M; Goodson C; Blankenship RE; Jankowiak R; Kell A J Phys Chem B; 2019 Nov; 123(46):9786-9791. PubMed ID: 31660744 [TBL] [Abstract][Full Text] [Related]
47. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U J Phys Chem B; 2011 Feb; 115(4):758-64. PubMed ID: 21142050 [TBL] [Abstract][Full Text] [Related]
48. Theory and Simulation of the Environmental Effects on FMO Electronic Transitions. Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U J Phys Chem Lett; 2011 Jun; 2011(2):1771-1776. PubMed ID: 21804928 [TBL] [Abstract][Full Text] [Related]
49. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. Higgins JS; Lloyd LT; Sohail SH; Allodi MA; Otto JP; Saer RG; Wood RE; Massey SC; Ting PC; Blankenship RE; Engel GS Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33688046 [TBL] [Abstract][Full Text] [Related]
50. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex. Hu Z; Liu Z; Sun X J Phys Chem B; 2022 Nov; 126(45):9271-9287. PubMed ID: 36327977 [TBL] [Abstract][Full Text] [Related]
51. Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment. Chaillet ML; Lengauer F; Adolphs J; Müh F; Fokas AS; Cole DJ; Chin AW; Renger T J Phys Chem Lett; 2020 Dec; 11(24):10306-10314. PubMed ID: 33227205 [TBL] [Abstract][Full Text] [Related]
52. Energy transfer from carotenoid and FMO-protein in subcellular preparations from green sulfur bacteria. Spectroscopic characterization of an FMO-reaction center core complex at low temperature. Francke C; Otte SC; Miller M; Amesz J; Olson JM Photosynth Res; 1996 Oct; 50(1):71-7. PubMed ID: 24271823 [TBL] [Abstract][Full Text] [Related]
53. Theoretical Study of the Spectral Differences of the Fenna-Matthews-Olson Protein from Different Species and Their Mutants. Huai Z; Tong Z; Mei Y; Mo Y J Phys Chem B; 2021 Aug; 125(30):8313-8324. PubMed ID: 34314175 [TBL] [Abstract][Full Text] [Related]
54. Protein Effects on the Optical Spectrum of the Fenna-Matthews-Olson Complex from Fully Quantum Chemical Calculations. König C; Neugebauer J J Chem Theory Comput; 2013 Mar; 9(3):1808-20. PubMed ID: 26587637 [TBL] [Abstract][Full Text] [Related]
55. The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. Schmidt Am Busch M; Müh F; El-Amine Madjet M; Renger T J Phys Chem Lett; 2011 Jan; 2(2):93-8. PubMed ID: 26295526 [TBL] [Abstract][Full Text] [Related]
56. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface. Higashi M; Saito S J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191 [TBL] [Abstract][Full Text] [Related]
57. Hydrogen-deuterium exchange mass spectrometry reveals the interaction of Fenna-Matthews-Olson protein and chlorosome CsmA protein. Huang RY; Wen J; Blankenship RE; Gross ML Biochemistry; 2012 Jan; 51(1):187-93. PubMed ID: 22142245 [TBL] [Abstract][Full Text] [Related]
58. Cryo-electron microscopy structure of the intact photosynthetic light-harvesting antenna-reaction center complex from a green sulfur bacterium. Chen JH; Wang W; Wang C; Kuang T; Shen JR; Zhang X J Integr Plant Biol; 2023 Jan; 65(1):223-234. PubMed ID: 36125941 [TBL] [Abstract][Full Text] [Related]
59. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description. Jurinovich S; Curutchet C; Mennucci B Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315 [TBL] [Abstract][Full Text] [Related]
60. A novel and mild isolation procedure of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum. Tokita S; Shimada K; Watabe K; Matsuura K; Mimuro M Photosynth Res; 2011 Sep; 108(2-3):183-90. PubMed ID: 21870189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]