These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 28159642)
1. Iron(III)-Mediated Oxidative Degradation on the Benzylic Carbon of Drug Molecules in the Absence of Initiating Peroxides. Nanda KK; Blincoe WD; Allain LR; Wuelfing WP; Harmon PA J Pharm Sci; 2017 May; 106(5):1347-1354. PubMed ID: 28159642 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates. Ansari A; Kaushik A; Rajaraman G J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840 [TBL] [Abstract][Full Text] [Related]
3. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant. Woodward JJ; Chang MM; Martin NI; Marletta MA J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180 [TBL] [Abstract][Full Text] [Related]
4. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic studies on peroxide activation by a water-soluble iron(III)-porphyrin: implications for O-O bond activation in aqueous and nonaqueous solvents. Wolak M; van Eldik R Chemistry; 2007; 13(17):4873-83. PubMed ID: 17366654 [TBL] [Abstract][Full Text] [Related]
6. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers. Hwang S; Huling SG; Ko S Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205 [TBL] [Abstract][Full Text] [Related]
7. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)-hydroperoxo species is a sluggish oxidant. Park MJ; Lee J; Suh Y; Kim J; Nam W J Am Chem Soc; 2006 Mar; 128(8):2630-4. PubMed ID: 16492048 [TBL] [Abstract][Full Text] [Related]
8. Axial ligand and spin-state influence on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes. Franke A; Fertinger C; van Eldik R Chemistry; 2012 May; 18(22):6935-49. PubMed ID: 22532376 [TBL] [Abstract][Full Text] [Related]
9. Accessibility and selective stabilization of the principal spin states of iron by pyridyl versus phenolic ketimines: modulation of the 6A1 ↔ 2T2 ground-state transformation of the [FeN4O2]+ chromophore. Shongwe MS; Al-Zaabi UA; Al-Mjeni F; Eribal CS; Sinn E; Al-Omari IA; Hamdeh HH; Matoga D; Adams H; Morris MJ; Rheingold AL; Bill E; Sellmyer DJ Inorg Chem; 2012 Aug; 51(15):8241-53. PubMed ID: 22808945 [TBL] [Abstract][Full Text] [Related]
10. Gold-Catalyzed Benzylic Azidation of Phthalans and Isochromans and Subsequent FeCl3-Catalyzed Nucleophilic Substitutions. Asai S; Yabe Y; Goto R; Nagata S; Monguchi Y; Kita Y; Sajiki H; Sawama Y Chem Pharm Bull (Tokyo); 2015; 63(10):757-61. PubMed ID: 26423031 [TBL] [Abstract][Full Text] [Related]
11. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Rey A; Bahamonde A; Casas JA; Rodríguez JJ Water Sci Technol; 2010; 61(11):2769-78. PubMed ID: 20489249 [TBL] [Abstract][Full Text] [Related]
12. Origin of the unusual kinetics of iron deposition in human H-chain ferritin. Bou-Abdallah F; Zhao G; Mayne HR; Arosio P; Chasteen ND J Am Chem Soc; 2005 Mar; 127(11):3885-93. PubMed ID: 15771525 [TBL] [Abstract][Full Text] [Related]
13. Catalytic C-H bond amination from high-spin iron imido complexes. King ER; Hennessy ET; Betley TA J Am Chem Soc; 2011 Apr; 133(13):4917-23. PubMed ID: 21405138 [TBL] [Abstract][Full Text] [Related]
14. A mononuclear non-heme high-spin iron(III)-hydroperoxo complex as an active oxidant in sulfoxidation reactions. Kim YM; Cho KB; Cho J; Wang B; Li C; Shaik S; Nam W J Am Chem Soc; 2013 Jun; 135(24):8838-41. PubMed ID: 23721290 [TBL] [Abstract][Full Text] [Related]
15. Control of the evolution of iron peroxide intermediate in superoxide reductase from Desulfoarculus baarsii. Involvement of lysine 48 in protonation. Bonnot F; Molle T; Ménage S; Moreau Y; Duval S; Favaudon V; Houée-Levin C; Nivière V J Am Chem Soc; 2012 Mar; 134(11):5120-30. PubMed ID: 22360372 [TBL] [Abstract][Full Text] [Related]
16. Formation of iron(III) meso-chloro-isoporphyrin as a reactive chlorinating agent from oxoiron(IV) porphyrin π-cation radical. Cong Z; Kurahashi T; Fujii H J Am Chem Soc; 2012 Mar; 134(10):4469-72. PubMed ID: 22375905 [TBL] [Abstract][Full Text] [Related]
17. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Zou J; Ma J; Chen L; Li X; Guan Y; Xie P; Pan C Environ Sci Technol; 2013 Oct; 47(20):11685-91. PubMed ID: 24033112 [TBL] [Abstract][Full Text] [Related]
18. Does a higher metal oxidation state necessarily imply higher reactivity toward H-atom transfer? A computational study of C-H bond oxidation by high-valent iron-oxo and -nitrido complexes. Geng C; Ye S; Neese F Dalton Trans; 2014 Apr; 43(16):6079-86. PubMed ID: 24492533 [TBL] [Abstract][Full Text] [Related]
20. Structure and redox behavior of iron oxophlorin and role of electron transfer in the heme degradation process. Gheidi M; Safari N; Zahedi M Inorg Chem; 2012 Dec; 51(23):12857-66. PubMed ID: 23145938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]