These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Edahiro Y; Araki M; Komatsu N Cancer Sci; 2020 Aug; 111(8):2682-2688. PubMed ID: 32462673 [TBL] [Abstract][Full Text] [Related]
3. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs). Dunbar A; Nazir A; Levine R Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953 [TBL] [Abstract][Full Text] [Related]
4. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Elf S; Abdelfattah NS; Chen E; Perales-Patón J; Rosen EA; Ko A; Peisker F; Florescu N; Giannini S; Wolach O; Morgan EA; Tothova Z; Losman JA; Schneider RK; Al-Shahrour F; Mullally A Cancer Discov; 2016 Apr; 6(4):368-81. PubMed ID: 26951227 [TBL] [Abstract][Full Text] [Related]
5. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms. O'Sullivan JM; Harrison CN Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129 [TBL] [Abstract][Full Text] [Related]
6. Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. Jia R; Kralovics R Int J Hematol; 2020 Feb; 111(2):182-191. PubMed ID: 31741139 [TBL] [Abstract][Full Text] [Related]
8. Genetic-pathologic characterization of myeloproliferative neoplasms. Kim Y; Park J; Jo I; Lee GD; Kim J; Kwon A; Choi H; Jang W; Chae H; Han K; Eom KS; Cho BS; Lee SE; Yang J; Shin SH; Kim H; Ko YH; Park H; Jin JY; Lee S; Jekarl DW; Yahng SA; Kim M Exp Mol Med; 2016 Jul; 48(7):e247. PubMed ID: 27444979 [TBL] [Abstract][Full Text] [Related]
9. Calreticulin haploinsufficiency augments stem cell activity and is required for onset of myeloproliferative neoplasms in mice. Shide K; Kameda T; Kamiunten A; Ozono Y; Tahira Y; Yokomizo-Nakano T; Kubota S; Ono M; Ikeda K; Sekine M; Akizuki K; Nakamura K; Hidaka T; Kubuki Y; Iwakiri H; Hasuike S; Nagata K; Sashida G; Shimoda K Blood; 2020 Jul; 136(1):106-118. PubMed ID: 32219445 [TBL] [Abstract][Full Text] [Related]
10. A primer on genomic and epigenomic alterations in the myeloproliferative neoplasms. Rampal R; Levine RL Best Pract Res Clin Haematol; 2014 Jun; 27(2):83-93. PubMed ID: 25189720 [TBL] [Abstract][Full Text] [Related]
11. Targets in MPNs and potential therapeutics. Levy G; Mambet C; Pecquet C; Bailly S; Havelange V; Diaconu CC; Constantinescu SN Int Rev Cell Mol Biol; 2022; 366():41-81. PubMed ID: 35153006 [TBL] [Abstract][Full Text] [Related]
12. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms. Frawley T; O'Brien CP; Conneally E; Vandenberghe E; Percy M; Langabeer SE; Haslam K Genet Test Mol Biomarkers; 2018 Feb; 22(2):98-103. PubMed ID: 29323541 [TBL] [Abstract][Full Text] [Related]
13. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Arranz L; Sánchez-Aguilera A; Martín-Pérez D; Isern J; Langa X; Tzankov A; Lundberg P; Muntión S; Tzeng YS; Lai DM; Schwaller J; Skoda RC; Méndez-Ferrer S Nature; 2014 Aug; 512(7512):78-81. PubMed ID: 25043017 [TBL] [Abstract][Full Text] [Related]
15. The prevalence of CALR mutations in a cohort of patients with myeloproliferative neoplasms. Grinsztejn E; Percy MJ; McClenaghan D; Quintana M; Cuthbert RJ; McMullin MF Int J Lab Hematol; 2016 Feb; 38(1):102-6. PubMed ID: 26555437 [TBL] [Abstract][Full Text] [Related]
16. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Araki M; Yang Y; Masubuchi N; Hironaka Y; Takei H; Morishita S; Mizukami Y; Kan S; Shirane S; Edahiro Y; Sunami Y; Ohsaka A; Komatsu N Blood; 2016 Mar; 127(10):1307-16. PubMed ID: 26817954 [TBL] [Abstract][Full Text] [Related]
17. pSTAT3/pSTAT5 Signaling Patterns in Molecularly Defined Subsets of Myeloproliferative Neoplasms. Sakr H; Clark Schneider K; Murugesan G; Bodo J; Hsi ED; Cook JR Appl Immunohistochem Mol Morphol; 2018 Feb; 26(2):147-152. PubMed ID: 27258562 [TBL] [Abstract][Full Text] [Related]
18. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Sangkhae V; Etheridge SL; Kaushansky K; Hitchcock IS Blood; 2014 Dec; 124(26):3956-63. PubMed ID: 25339357 [TBL] [Abstract][Full Text] [Related]
19. Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Mosca M; Hermange G; Tisserand A; Noble R; Marzac C; Marty C; Le Sueur C; Campario H; Vertenoeil G; El-Khoury M; Catelain C; Rameau P; Gella C; Lenglet J; Casadevall N; Favier R; Solary E; Cassinat B; Kiladjian JJ; Constantinescu SN; Pasquier F; Hochberg ME; Raslova H; Villeval JL; Girodon F; Vainchenker W; Cournède PH; Plo I Blood; 2021 Dec; 138(22):2231-2243. PubMed ID: 34407546 [TBL] [Abstract][Full Text] [Related]
20. [Gene mutations in myeloproliferative neoplasms]. Araki M; Morishita S; Komatsu N Rinsho Ketsueki; 2016; 57(12):2526-2534. PubMed ID: 28090022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]