These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
694 related articles for article (PubMed ID: 28159736)
21. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond. Michiels JJ; Berneman Z; Schroyens W; De Raeve H Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092 [TBL] [Abstract][Full Text] [Related]
22. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals. Zacharaki D; Ghazanfari R; Li H; Lim HC; Scheding S Eur J Haematol; 2018 Jul; 101(1):57-67. PubMed ID: 29645296 [TBL] [Abstract][Full Text] [Related]
23. The Molecular Genetics of Myeloproliferative Neoplasms. Marneth AE; Mullally A Cold Spring Harb Perspect Med; 2020 Feb; 10(2):. PubMed ID: 31548225 [TBL] [Abstract][Full Text] [Related]
25. [Application of genetic data to clinical practice of MPN]. Edahiro Y Rinsho Ketsueki; 2015 Aug; 56(8):949-55. PubMed ID: 26345552 [TBL] [Abstract][Full Text] [Related]
26. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Elf S; Abdelfattah NS; Baral AJ; Beeson D; Rivera JF; Ko A; Florescu N; Birrane G; Chen E; Mullally A Blood; 2018 Feb; 131(7):782-786. PubMed ID: 29288169 [TBL] [Abstract][Full Text] [Related]
28. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis. Merlinsky TR; Levine RL; Pronier E Clin Cancer Res; 2019 May; 25(10):2956-2962. PubMed ID: 30655313 [TBL] [Abstract][Full Text] [Related]
29. Calreticulin exon 9 mutations in myeloproliferative neoplasms. Ha JS; Kim YK Ann Lab Med; 2015 Jan; 35(1):22-7. PubMed ID: 25553276 [TBL] [Abstract][Full Text] [Related]
30. Phenotypic characterization of disease-initiating stem cells in JAK2- or CALR-mutated myeloproliferative neoplasms. Ivanov D; Milosevic Feenstra JD; Sadovnik I; Herrmann H; Peter B; Willmann M; Greiner G; Slavnitsch K; Hadzijusufovic E; Rülicke T; Dahlhoff M; Hoermann G; Machherndl-Spandl S; Eisenwort G; Fillitz M; Sliwa T; Krauth MT; Bettelheim P; Sperr WR; Koller E; Pfeilstöcker M; Gisslinger H; Keil F; Kralovics R; Valent P Am J Hematol; 2023 May; 98(5):770-783. PubMed ID: 36814396 [TBL] [Abstract][Full Text] [Related]
31. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. Han L; Schubert C; Köhler J; Schemionek M; Isfort S; Brümmendorf TH; Koschmieder S; Chatain N J Hematol Oncol; 2016 May; 9(1):45. PubMed ID: 27177927 [TBL] [Abstract][Full Text] [Related]
32. The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). Zhan H; Kaushansky K Adv Exp Med Biol; 2020; 1273():135-145. PubMed ID: 33119879 [TBL] [Abstract][Full Text] [Related]
33. Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Lee J; Godfrey AL; Nangalia J Blood Rev; 2020 Jul; 42():100708. PubMed ID: 32571583 [TBL] [Abstract][Full Text] [Related]
34. Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Shepherd MS; Li J; Wilson NK; Oedekoven CA; Li J; Belmonte M; Fink J; Prick JCM; Pask DC; Hamilton TL; Loeffler D; Rao A; Schröder T; Göttgens B; Green AR; Kent DG Blood; 2018 Aug; 132(8):791-803. PubMed ID: 29991556 [TBL] [Abstract][Full Text] [Related]
35. Heterogeneity in myeloproliferative neoplasms: Causes and consequences. O'Sullivan J; Mead AJ Adv Biol Regul; 2019 Jan; 71():55-68. PubMed ID: 30528537 [TBL] [Abstract][Full Text] [Related]
36. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms. Rumi E; Cazzola M Br J Haematol; 2017 Sep; 178(5):689-698. PubMed ID: 28444727 [TBL] [Abstract][Full Text] [Related]
37. Mutant calreticulin in myeloproliferative neoplasms. How J; Hobbs GS; Mullally A Blood; 2019 Dec; 134(25):2242-2248. PubMed ID: 31562135 [TBL] [Abstract][Full Text] [Related]
38. Somatic mutations of calreticulin in myeloproliferative neoplasms. Klampfl T; Gisslinger H; Harutyunyan AS; Nivarthi H; Rumi E; Milosevic JD; Them NC; Berg T; Gisslinger B; Pietra D; Chen D; Vladimer GI; Bagienski K; Milanesi C; Casetti IC; Sant'Antonio E; Ferretti V; Elena C; Schischlik F; Cleary C; Six M; Schalling M; Schönegger A; Bock C; Malcovati L; Pascutto C; Superti-Furga G; Cazzola M; Kralovics R N Engl J Med; 2013 Dec; 369(25):2379-90. PubMed ID: 24325356 [TBL] [Abstract][Full Text] [Related]
39. JAK2V617F Megakaryocytes Promote Hematopoietic Stem/Progenitor Cell Expansion in Mice Through Thrombopoietin/MPL Signaling. Zhang Y; Lin CHS; Kaushansky K; Zhan H Stem Cells; 2018 Nov; 36(11):1676-1684. PubMed ID: 30005133 [TBL] [Abstract][Full Text] [Related]
40. Progenitor genotyping reveals a complex clonal architecture in a subset of CALR-mutated myeloproliferative neoplasms. Martin S; Wright CM; Scott LM Br J Haematol; 2017 Apr; 177(1):55-66. PubMed ID: 28168700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]