These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli. Lee DH; Feist AM; Barrett CL; Palsson BØ PLoS One; 2011; 6(10):e26172. PubMed ID: 22028828 [TBL] [Abstract][Full Text] [Related]
10. Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme. Salverda MLM; Koomen J; Koopmanschap B; Zwart MP; de Visser JAGM Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12773-12778. PubMed ID: 29133391 [TBL] [Abstract][Full Text] [Related]
11. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Sandberg TE; Pedersen M; LaCroix RA; Ebrahim A; Bonde M; Herrgard MJ; Palsson BO; Sommer M; Feist AM Mol Biol Evol; 2014 Oct; 31(10):2647-62. PubMed ID: 25015645 [TBL] [Abstract][Full Text] [Related]
12. Accelerated Adaptive Laboratory Evolution by Automated Repeated Batch Processes in Parallelized Bioreactors. Bromig L; Weuster-Botz D Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838240 [TBL] [Abstract][Full Text] [Related]
13. Dissection of the mutation accumulation process during bacterial range expansions. Bosshard L; Peischl S; Ackermann M; Excoffier L BMC Genomics; 2020 Mar; 21(1):253. PubMed ID: 32293258 [TBL] [Abstract][Full Text] [Related]
14. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Sandberg TE; Salazar MJ; Weng LL; Palsson BO; Feist AM Metab Eng; 2019 Dec; 56():1-16. PubMed ID: 31401242 [TBL] [Abstract][Full Text] [Related]
15. [Advances in adaptive laboratory evolutionary engineering to microbial breeding]. Li J; Kong J; Li S; Zhao Y; Zhao Y; Xiao D; Yu A Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):130-141. PubMed ID: 33501795 [TBL] [Abstract][Full Text] [Related]
16. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. Clune J; Misevic D; Ofria C; Lenski RE; Elena SF; Sanjuán R PLoS Comput Biol; 2008 Sep; 4(9):e1000187. PubMed ID: 18818724 [TBL] [Abstract][Full Text] [Related]
17. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. Horinouchi T; Sakai A; Kotani H; Tanabe K; Furusawa C J Biotechnol; 2017 Aug; 255():47-56. PubMed ID: 28645581 [TBL] [Abstract][Full Text] [Related]
18. Survival probability of beneficial mutations in bacterial batch culture. Wahl LM; Zhu AD Genetics; 2015 May; 200(1):309-20. PubMed ID: 25758382 [TBL] [Abstract][Full Text] [Related]
19. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Elena SF; Ekunwe L; Hajela N; Oden SA; Lenski RE Genetica; 1998; 102-103(1-6):349-58. PubMed ID: 9720287 [TBL] [Abstract][Full Text] [Related]
20. Benefits of a Recombination-Proficient Escherichia coli System for Adaptive Laboratory Evolution. Peabody G; Winkler J; Fountain W; Castro DA; Leiva-Aravena E; Kao KC Appl Environ Microbiol; 2016 Nov; 82(22):6736-6747. PubMed ID: 27613685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]