BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28159806)

  • 1. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.
    Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers.
    Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure.
    Brothers RM; Zhang R; Wingo JE; Hubing KA; Crandall CG
    J Appl Physiol (1985); 2009 Dec; 107(6):1722-9. PubMed ID: 19797691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral blood flow response to cardiorespiratory oscillations in healthy humans.
    Holme NLA; Zilakos I; Elstad M; Skytioti M
    Auton Neurosci; 2023 Mar; 245():103069. PubMed ID: 36584666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory cerebral blood flow is associated with impaired neurocognition and functional hyperemia in postural tachycardia syndrome during graded tilt.
    Stewart JM; Del Pozzi AT; Pandey A; Messer ZR; Terilli C; Medow MS
    Hypertension; 2015 Mar; 65(3):636-43. PubMed ID: 25510829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of cerebral blood velocity and tissue oxygenation to low-frequency oscillations during simulated haemorrhagic stress in humans.
    Anderson GK; Sprick JD; Park FS; Rosenberg AJ; Rickards CA
    Exp Physiol; 2019 Aug; 104(8):1190-1201. PubMed ID: 31090115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations.
    Hamner JW; Cohen MA; Mukai S; Lipsitz LA; Taylor JA
    J Physiol; 2004 Sep; 559(Pt 3):965-73. PubMed ID: 15254153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of oscillatory hemodynamics on the cardiovascular responses to simulated hemorrhage during isocapnia.
    Anderson GK; Davis KA; Bhuiyan N; Rusy R; Rosenberg AJ; Rickards CA
    J Appl Physiol (1985); 2023 Dec; 135(6):1312-1322. PubMed ID: 37881852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure.
    Labrecque L; Roy MA; Soleimani Dehnavi S; Taghizadeh M; Smirl JD; Brassard P
    J Cereb Blood Flow Metab; 2024 Apr; ():271678X241247633. PubMed ID: 38613236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress.
    Brown CM; Dütsch M; Ohring S; Neundörfer B; Hilz MJ
    Eur J Appl Physiol; 2004 Mar; 91(2-3):279-86. PubMed ID: 14574578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular regulation in humans in response to oscillatory lower body negative pressure.
    Levenhagen DK; Evans JM; Wang M; Knapp CF
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H593-604. PubMed ID: 8067416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Neurovascular Coupling by Spectral Analysis of Cerebral Blood Flow Velocity With Transcranial Doppler.
    Ferreira J; Ferreira P; Azevedo E; Castro P
    Ultrasound Med Biol; 2024 May; 50(5):751-759. PubMed ID: 38418342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2016 Mar; 120(5):552-63. PubMed ID: 26586907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing cerebral autoregulation via oscillatory lower body negative pressure and projection pursuit regression.
    Taylor JA; Tan CO; Hamner JW
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative representation of neural activation in multivariate models of neurovascular coupling in humans.
    Panerai RB; Hanby MF; Robinson TG; Haunton VJ
    J Neurophysiol; 2019 Aug; 122(2):833-843. PubMed ID: 31242062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postural neurocognitive and neuronal activated cerebral blood flow deficits in young chronic fatigue syndrome patients with postural tachycardia syndrome.
    Stewart JM; Medow MS; Messer ZR; Baugham IL; Terilli C; Ocon AJ
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1185-94. PubMed ID: 22180650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
    Hilz MJ; Kolodny EH; Brys M; Stemper B; Haendl T; Marthol H
    J Neurol; 2004 May; 251(5):564-70. PubMed ID: 15164189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demographic and Systemic Hemodynamic Influences in Mechanisms of Cerebrovascular Regulation in Healthy Adults.
    Madureira J; Castro P; Azevedo E
    J Stroke Cerebrovasc Dis; 2017 Mar; 26(3):500-508. PubMed ID: 28038898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.