These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1136 related articles for article (PubMed ID: 28160265)
1. Comparison of Different Obesity Indices for Predicting Incident Hypertension. Janghorbani M; Aminorroaya A; Amini M High Blood Press Cardiovasc Prev; 2017 Jun; 24(2):157-166. PubMed ID: 28160265 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of anthropometric indices of obesity as correlates and potential predictors of risk for hypertension and prehypertension in a population in Nigeria. Ononamadu CJ; Ezekwesili CN; Onyeukwu OF; Umeoguaju UF; Ezeigwe OC; Ihegboro GO Cardiovasc J Afr; 2017 Mar/Apr 23; 28(2):92-99. PubMed ID: 27701484 [TBL] [Abstract][Full Text] [Related]
3. The Visceral Adiposity Index in Comparison with Easily Measurable Anthropometric Markers Did Not Improve Prediction of Diabetes. Janghorbani M; Amini M Can J Diabetes; 2016 Oct; 40(5):393-398. PubMed ID: 27133398 [TBL] [Abstract][Full Text] [Related]
4. Predicting hypertension by obesity- and lipid-related indices in mid-aged and elderly Chinese: a nationwide cohort study from the China Health and Retirement Longitudinal Study. Li Y; Gui J; Zhang X; Wang Y; Mei Y; Yang X; Liu H; Guo LL; Li J; Lei Y; Li X; Sun L; Yang L; Yuan T; Wang C; Zhang D; Wei H; Li J; Liu M; Hua Y; Zhang L BMC Cardiovasc Disord; 2023 Apr; 23(1):201. PubMed ID: 37081416 [TBL] [Abstract][Full Text] [Related]
5. Prediction of a new body shape index and body adiposity estimator for development of type 2 diabetes mellitus: The Rural Chinese Cohort Study. Han C; Liu Y; Sun X; Luo X; Zhang L; Wang B; Ren Y; Zhou J; Zhao Y; Zhang D; Liu X; Zhang M; Hu D Br J Nutr; 2017 Nov; 118(10):771-776. PubMed ID: 29143718 [TBL] [Abstract][Full Text] [Related]
6. Anthropometric indices predicting incident hypertension in an Iranian population: The Isfahan cohort study. Sadeghi M; Talaei M; Gharipour M; Oveisgharan S; Nezafati P; Dianatkhah M; Sarrafzadegan N Anatol J Cardiol; 2019 Jun; 22(1):33-43. PubMed ID: 31264654 [TBL] [Abstract][Full Text] [Related]
7. Different adiposity indices and their associations with hypertension among Chinese population from Jiangxi province. Hu L; Hu G; Huang X; Zhou W; You C; Li J; Li P; Wu Y; Wu Q; Wang Z; Gao R; Bao H; Cheng X BMC Cardiovasc Disord; 2020 Mar; 20(1):115. PubMed ID: 32138664 [TBL] [Abstract][Full Text] [Related]
8. New anthropometric indices or old ones: which perform better in estimating cardiovascular risks in Chinese adults. Wang F; Chen Y; Chang Y; Sun G; Sun Y BMC Cardiovasc Disord; 2018 Jan; 18(1):14. PubMed ID: 29378513 [TBL] [Abstract][Full Text] [Related]
9. Comparison of different obesity indices related with hypertension among different sex and age groups in China. Ge Q; Qi Z; Xu Z; Li M; Zheng H; Duan X; Chu M; Zhuang X Nutr Metab Cardiovasc Dis; 2021 Mar; 31(3):793-801. PubMed ID: 33549448 [TBL] [Abstract][Full Text] [Related]
10. Visceral adiposity index (VAI), a powerful predictor of incident hypertension in prehypertensives. Zhang Z; Shi D; Zhang Q; Wang S; Liu K; Meng Q; Chen X Intern Emerg Med; 2018 Jun; 13(4):509-516. PubMed ID: 29569088 [TBL] [Abstract][Full Text] [Related]
11. Comparison of anthropometric indices for predicting the risk of metabolic syndrome and its components in Chinese adults: a prospective, longitudinal study. Wang H; Liu A; Zhao T; Gong X; Pang T; Zhou Y; Xiao Y; Yan Y; Fan C; Teng W; Lai Y; Shan Z BMJ Open; 2017 Sep; 7(9):e016062. PubMed ID: 28928179 [TBL] [Abstract][Full Text] [Related]
12. Utility of the Visceral Adiposity Index and Hypertriglyceridemic Waist Phenotype for Predicting Incident Hypertension. Janghorbani M; Salamat MR; Aminorroaya A; Amini M Endocrinol Metab (Seoul); 2017 Jun; 32(2):221-229. PubMed ID: 28537054 [TBL] [Abstract][Full Text] [Related]
13. Using different anthropometric indices to assess prediction ability of type 2 diabetes in elderly population: a 5 year prospective study. Yang J; Wang F; Wang J; Han X; Hu H; Yu C; Yuan J; Yao P; Miao X; Wei S; Wang Y; Chen W; Liang Y; Guo H; Zhang X; Zheng D; Tang Y; Yang H; He M BMC Geriatr; 2018 Sep; 18(1):218. PubMed ID: 30223783 [TBL] [Abstract][Full Text] [Related]
14. Predicting value of five anthropometric measures in metabolic syndrome among Jiangsu Province, China. Tian T; Zhang J; Zhu Q; Xie W; Wang Y; Dai Y BMC Public Health; 2020 Aug; 20(1):1317. PubMed ID: 32867710 [TBL] [Abstract][Full Text] [Related]
15. Determining the best method for evaluating obesity and the risk for non-communicable diseases in women of childbearing age by measuring the body mass index, waist circumference, waist-to-hip ratio, waist-to-height ratio, A Body Shape Index, and hip index. Hewage N; Wijesekara U; Perera R Nutrition; 2023 Oct; 114():112135. PubMed ID: 37453224 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the ability to identify arterial stiffness between two new anthropometric indices and classical obesity indices in Chinese adults. Zhang J; Fang L; Qiu L; Huang L; Zhu W; Yu Y Atherosclerosis; 2017 Aug; 263():263-271. PubMed ID: 28704699 [TBL] [Abstract][Full Text] [Related]
17. A comparative evaluation of waist circumference, waist-to-hip ratio, waist-to-height ratio and body mass index as indicators of impaired glucose tolerance and as risk factors for type-2 diabetes mellitus. Łopatyński J; Mardarowicz G; Szcześniak G Ann Univ Mariae Curie Sklodowska Med; 2003; 58(1):413-9. PubMed ID: 15315025 [TBL] [Abstract][Full Text] [Related]
18. Comparison of body mass index, waist circumference, conicity index, and waist-to-height ratio for predicting incidence of hypertension: the rural Chinese cohort study. Chen X; Liu Y; Sun X; Yin Z; Li H; Deng K; Cheng C; Liu L; Luo X; Zhang R; Liu F; Zhou Q; Wang C; Li L; Zhang L; Wang B; Zhao Y; Zhou J; Han C; Zhang H; Yang X; Pang C; Yin L; Feng T; Zhao J; Zhang M; Hu D J Hum Hypertens; 2018 Mar; 32(3):228-235. PubMed ID: 29416119 [TBL] [Abstract][Full Text] [Related]
19. Cut-off points for anthropometric indices to screen for hypertension among Iranian adults of the Bandare-Kong cohort: a cross-sectional study. Azarbad A; Aghnia T; Gharibzadeh A; Rafati S; Hashemi SM; Zarei H; Kheirandish M BMC Public Health; 2022 Nov; 22(1):2064. PubMed ID: 36369024 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of various adiposity indices in identifying cardiometabolic diseases in Arab adults. Al-Daghri NM; Al-Attas OS; Wani K; Alnaami AM; Sabico S; Al-Ajlan A; Chrousos GP; Alokail MS Cardiovasc Diabetol; 2015 Aug; 14():101. PubMed ID: 26249167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]