These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 28160463)

  • 1. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.
    Xiao D; Vanni MP; Mitelut CC; Chan AW; LeDue JM; Xie Y; Chen AC; Swindale NV; Murphy TH
    Elife; 2017 Feb; 6():. PubMed ID: 28160463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesotrode chronic simultaneous mesoscale cortical imaging and subcortical or peripheral nerve spiking activity recording in mice.
    Xiao D; Yan Y; Murphy TH
    Elife; 2023 Nov; 12():. PubMed ID: 37962180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale Mapping of Mouse Cortex Reveals Frequency-Dependent Cycling between Distinct Macroscale Functional Modules.
    Vanni MP; Chan AW; Balbi M; Silasi G; Murphy TH
    J Neurosci; 2017 Aug; 37(31):7513-7533. PubMed ID: 28674167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MesoNet allows automated scaling and segmentation of mouse mesoscale cortical maps using machine learning.
    Xiao D; Forys BJ; Vanni MP; Murphy TH
    Nat Commun; 2021 Oct; 12(1):5992. PubMed ID: 34645817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
    Yu XJ; Meng XK; Xu XX; He J
    Neuroscience; 2011 Oct; 193():122-31. PubMed ID: 21820493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.
    Fiáth R; Beregszászi P; Horváth D; Wittner L; Aarts AA; Ruther P; Neves HP; Bokor H; Acsády L; Ulbert I
    J Neurophysiol; 2016 Nov; 116(5):2312-2330. PubMed ID: 27535370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive imaging of cortical networks.
    Peron S; Chen TW; Svoboda K
    Curr Opin Neurobiol; 2015 Jun; 32():115-23. PubMed ID: 25880117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike timing and synaptic dynamics at the awake thalamocortical synapse.
    Swadlow HA; Bezdudnaya T; Gusev AG
    Prog Brain Res; 2005; 149():91-105. PubMed ID: 16226579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural dynamics in cortical networks--precision of joint-spiking events.
    Aertsen A; Diesmann M; Gewaltig MO; Grün S; Rotter S
    Novartis Found Symp; 2001; 239():193-204; discussion 204-7, 234-40. PubMed ID: 11529312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrate-and-fire network model of activity propagation from thalamus to cortex.
    Saponati M; Garcia-Ojalvo J; Cataldo E; Mazzoni A
    Biosystems; 2019 Sep; 183():103978. PubMed ID: 31152773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition between Functional Regimes in an Integrate-And-Fire Network Model of the Thalamus.
    Barardi A; Garcia-Ojalvo J; Mazzoni A
    PLoS One; 2016; 11(9):e0161934. PubMed ID: 27598260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of High-Frequency Mesoscale Intracortical Maps Using the Genetically Encoded Glutamate Sensor iGluSnFR.
    Xie Y; Chan AW; McGirr A; Xue S; Xiao D; Zeng H; Murphy TH
    J Neurosci; 2016 Jan; 36(4):1261-72. PubMed ID: 26818514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike timing-based regulation of thalamocortical signaling.
    Wyche IS; O'Connor DH
    Neuron; 2022 Sep; 110(17):2707-2709. PubMed ID: 36076335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus.
    Nakamura KC; Sharott A; Magill PJ
    Cereb Cortex; 2014 Jan; 24(1):81-97. PubMed ID: 23042738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding thalamic afferent input using microcircuit spiking activity.
    Sederberg AJ; Palmer SE; MacLean JN
    J Neurophysiol; 2015 Apr; 113(7):2921-33. PubMed ID: 25695647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the visualization of spiking neurons in virtual reality.
    von Kapri A; Rick T; Potjans TC; Diesmann M; Kuhlen T
    Stud Health Technol Inform; 2011; 163():685-7. PubMed ID: 21335880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits.
    Grossberg S; Versace M
    Brain Res; 2008 Jul; 1218():278-312. PubMed ID: 18533136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network activity and spike discharge oscillations in cortical slice cultures from neonatal rat.
    Czarnecki A; Tscherter A; Streit J
    Eur J Neurosci; 2012 Feb; 35(3):375-88. PubMed ID: 22276985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.
    Bellay T; Klaus A; Seshadri S; Plenz D
    Elife; 2015 Jul; 4():e07224. PubMed ID: 26151674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.