These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28161109)

  • 1. The stabilizing properties of foot yaw in human walking.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    J Biomech; 2017 Feb; 53():1-8. PubMed ID: 28161109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active control of lateral balance in human walking.
    Bauby CE; Kuo AD
    J Biomech; 2000 Nov; 33(11):1433-40. PubMed ID: 10940402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary mechanisms for upright balance during walking.
    Reimann H; Fettrow TD; Thompson ED; Agada P; McFadyen BJ; Jeka JJ
    PLoS One; 2017; 12(2):e0172215. PubMed ID: 28234936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does variability of footfall kinematics correlate with dynamic stability of the centre of mass during walking?
    König Ignasiak N; Ravi DK; Orter S; Hosseini Nasab SH; Taylor WR; Singh NB
    PLoS One; 2019; 14(5):e0217460. PubMed ID: 31150452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direction-dependent control of balance during walking and standing.
    O'Connor SM; Kuo AD
    J Neurophysiol; 2009 Sep; 102(3):1411-9. PubMed ID: 19553493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human foot placement and balance in the sagittal plane.
    Millard M; Wight D; McPhee J; Kubica E; Wang D
    J Biomech Eng; 2009 Dec; 131(12):121001. PubMed ID: 20524724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies used by individuals with multiple sclerosis and with mild disability to maintain dynamic stability during a steering task.
    Denommé LT; Mandalfino P; Cinelli ME
    Exp Brain Res; 2014 Jun; 232(6):1811-22. PubMed ID: 24562410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability-maneuverability trade-offs during lateral steps.
    Acasio J; Wu M; Fey NP; Gordon KE
    Gait Posture; 2017 Feb; 52():171-177. PubMed ID: 27915220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An apparent contradiction: increasing variability to achieve greater precision?
    Rosenblatt NJ; Hurt CP; Latash ML; Grabiner MD
    Exp Brain Res; 2014 Feb; 232(2):403-13. PubMed ID: 24162866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two independent contributions to step variability during over-ground human walking.
    Collins SH; Kuo AD
    PLoS One; 2013; 8(8):e73597. PubMed ID: 24015308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of speed and directional change on postural adjustments during gait initiation.
    Corbeil P; Anaka E
    J Electromyogr Kinesiol; 2011 Oct; 21(5):734-41. PubMed ID: 21689946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional kinematics and dynamics of the foot during walking: a model of central control mechanisms.
    Osaki Y; Kunin M; Cohen B; Raphan T
    Exp Brain Res; 2007 Jan; 176(3):476-96. PubMed ID: 16917770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of visual deprivation on stability among young and older adults during treadmill walking.
    Saucedo F; Yang F
    Gait Posture; 2017 May; 54():106-111. PubMed ID: 28284144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.