BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 28161276)

  • 1. Erythroid specific activator GATA-1-dependent interactions between CTCF sites around the β-globin locus.
    Kang Y; Kim YW; Kang J; Yun WJ; Kim A
    Biochim Biophys Acta Gene Regul Mech; 2017 Apr; 1860(4):416-426. PubMed ID: 28161276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GATA-1-dependent histone H3K27 acetylation mediates erythroid cell-specific chromatin interaction between CTCF sites.
    Kim YW; Kang Y; Kang J; Kim A
    FASEB J; 2020 Nov; 34(11):14736-14749. PubMed ID: 32924169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythroid activator NF-E2, TAL1 and KLF1 play roles in forming the LCR HSs in the human adult β-globin locus.
    Kim YW; Yun WJ; Kim A
    Int J Biochem Cell Biol; 2016 Jun; 75():45-52. PubMed ID: 27026582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus.
    Kang Y; Kim YW; Yun J; Shin J; Kim A
    Biochim Biophys Acta; 2015 Mar; 1849(3):282-9. PubMed ID: 25528728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression.
    Layon ME; Ackley CJ; West RJ; Lowrey CH
    J Mol Biol; 2007 Feb; 366(3):737-44. PubMed ID: 17196618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice.
    Shimotsuma M; Okamura E; Matsuzaki H; Fukamizu A; Tanimoto K
    J Biol Chem; 2010 May; 285(19):14495-503. PubMed ID: 20231293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites.
    Kim J; Kang J; Kim YW; Kim A
    FASEB J; 2021 Jun; 35(6):e21669. PubMed ID: 34033138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture.
    Mahajan MC; Karmakar S; Newburger PE; Krause DS; Weissman SM
    Exp Hematol; 2009 Oct; 37(10):1143-1156.e3. PubMed ID: 19607874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of transcriptional activator GATA-1 at human beta-globin HS2.
    Cho Y; Song SH; Lee JJ; Choi N; Kim CG; Dean A; Kim A
    Nucleic Acids Res; 2008 Aug; 36(14):4521-8. PubMed ID: 18586828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus.
    Junier I; Dale RK; Hou C; Képès F; Dean A
    Nucleic Acids Res; 2012 Sep; 40(16):7718-27. PubMed ID: 22705794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human beta-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells.
    Tanimoto K; Sugiura A; Omori A; Felsenfeld G; Engel JD; Fukamizu A
    Mol Cell Biol; 2003 Dec; 23(24):8946-52. PubMed ID: 14645507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin structure at the flanking regions of the human beta-globin locus control region DNase I hypersensitive site-2: proposed nucleosome positioning by DNA-binding proteins including GATA-1.
    Davies N; Freebody J; Murray V
    Biochim Biophys Acta; 2004 Sep; 1679(3):201-13. PubMed ID: 15358512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes.
    Woon Kim Y; Kim S; Geun Kim C; Kim A
    Nucleic Acids Res; 2011 Sep; 39(16):6944-55. PubMed ID: 21609963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer-promoter interaction in the β-globin locus.
    Kang J; Kim YW; Park S; Kang Y; Kim A
    FASEB J; 2021 Aug; 35(8):e21768. PubMed ID: 34245617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional cross-talk between a distant enhancer and the epsilon-globin gene promoter shows interdependence of the two elements in chromatin.
    McDowell JC; Dean A
    Mol Cell Biol; 1999 Nov; 19(11):7600-9. PubMed ID: 10523648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome and transcription activator antagonism at human beta-globin locus control region DNase I hypersensitive sites.
    Kim A; Song SH; Brand M; Dean A
    Nucleic Acids Res; 2007; 35(17):5831-8. PubMed ID: 17720709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5'HS5 of the human beta-globin locus control region is dispensable for the formation of the beta-globin active chromatin hub.
    Chan PK; Wai A; Philipsen S; Tan-Un KC
    PLoS One; 2008 May; 3(5):e2134. PubMed ID: 18461170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell type specificity of chromatin organization mediated by CTCF and cohesin.
    Hou C; Dale R; Dean A
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3651-6. PubMed ID: 20133600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible interaction between B1 retrotransposon-containing sequences and β(major) globin gene transcriptional activation during MEL cell erythroid differentiation.
    Vizirianakis IS; Tezias SS; Amanatiadou EP; Tsiftsoglou AS
    Cell Biol Int; 2012 Jan; 36(1):47-55. PubMed ID: 21970403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription.
    Yun WJ; Kim YW; Kang Y; Lee J; Dean A; Kim A
    Nucleic Acids Res; 2014 Apr; 42(7):4283-93. PubMed ID: 24470145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.