These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28161552)

  • 41. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrostatic contributions to T4 lysozyme stability: solvent-exposed charges versus semi-buried salt bridges.
    Dong F; Zhou HX
    Biophys J; 2002 Sep; 83(3):1341-7. PubMed ID: 12202359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of acidic pH on the stability of α-synuclein dimers.
    Lv Z; Krasnoslobodtsev AV; Zhang Y; Ysselstein D; Rochet JC; Blanchard SC; Lyubchenko YL
    Biopolymers; 2016 Oct; 105(10):715-24. PubMed ID: 27177831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of the Pathogenic Mutation A117V and the Protective Mutation H111S on the Folding and Aggregation of PrP106-126: Insights from Replica Exchange Molecular Dynamics Simulations.
    Ning L; Pan D; Zhang Y; Wang S; Liu H; Yao X
    PLoS One; 2015; 10(5):e0125899. PubMed ID: 25993001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Defining the role of salt bridges in protein stability.
    Jelesarov I; Karshikoff A
    Methods Mol Biol; 2009; 490():227-60. PubMed ID: 19157086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis.
    Fisher CL; Cabelli DE; Tainer JA; Hallewell RA; Getzoff ED
    Proteins; 1994 May; 19(1):24-34. PubMed ID: 8066083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. II. Electrostatic effect in the aggregation of heat-denatured RNase A and implications for protein additive design.
    Tsai AM; van Zanten JH; Betenbaugh MJ
    Biotechnol Bioeng; 1998 Aug; 59(3):281-5. PubMed ID: 10099338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving the affinity of an antibody for its antigen via long-range electrostatic interactions.
    Fukunaga A; Tsumoto K
    Protein Eng Des Sel; 2013 Dec; 26(12):773-80. PubMed ID: 24214686
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of an Aβ-antibody fragment on Aβ aggregation and astrocytic uptake are modulated by apolipoprotein E and J mimetic peptides.
    Montoliu-Gaya L; Mulder SD; Veerhuis R; Villegas S
    PLoS One; 2017; 12(11):e0188191. PubMed ID: 29155887
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity.
    Sinha N; Mohan S; Lipschultz CA; Smith-Gill SJ
    Biophys J; 2002 Dec; 83(6):2946-68. PubMed ID: 12496069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aggregate structure, morphology and the effect of aggregation mechanisms on viscosity at elevated protein concentrations.
    Barnett GV; Qi W; Amin S; Neil Lewis E; Roberts CJ
    Biophys Chem; 2015 Dec; 207():21-9. PubMed ID: 26284891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of the early stages of human γD-crystallin aggregation process.
    Chang CK; Wang SS; Lo CH; Hsiao HC; Wu JW
    J Biomol Struct Dyn; 2017 Apr; 35(5):1042-1054. PubMed ID: 27025196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aggregation gatekeeper and controlled assembly of Trpzip β-hairpins.
    Markiewicz BN; Oyola R; Du D; Gai F
    Biochemistry; 2014 Feb; 53(7):1146-54. PubMed ID: 24498924
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation.
    Bacarizo J; Martinez-Rodriguez S; Martin-Garcia JM; Andujar-Sanchez M; Ortiz-Salmeron E; Neira JL; Camara-Artigas A
    PLoS One; 2014; 9(12):e113224. PubMed ID: 25490095
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal aggregation of alpha-chymotrypsin: role of hydrophobic and electrostatic interactions.
    Rezaei-Ghaleh N; Ramshini H; Ebrahim-Habibi A; Moosavi-Movahedi AA; Nemat-Gorgani M
    Biophys Chem; 2008 Jan; 132(1):23-32. PubMed ID: 17964060
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Site-specific contributions to the pH dependence of protein stability.
    Tollinger M; Crowhurst KA; Kay LE; Forman-Kay JD
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4545-50. PubMed ID: 12671071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interactions in the native state of monellin, which play a protective role against aggregation.
    Szczepankiewicz O; Cabaleiro-Lago C; Tartaglia GG; Vendruscolo M; Hunter T; Hunter GJ; Nilsson H; Thulin E; Linse S
    Mol Biosyst; 2011 Feb; 7(2):521-32. PubMed ID: 21076757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring protein aggregation and self-propagation using lattice models: phase diagram and kinetics.
    Dima RI; Thirumalai D
    Protein Sci; 2002 May; 11(5):1036-49. PubMed ID: 11967361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.