These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Small duct and large duct type intrahepatic cholangiocarcinoma reveal distinct patterns of immune signatures. Bernatz S; Schulze F; Bein J; Bankov K; Mahmoudi S; Grünewald LD; Koch V; Stehle A; Schnitzbauer AA; Walter D; Finkelmeier F; Zeuzem S; Vogl TJ; Wild PJ; Kinzler MN J Cancer Res Clin Oncol; 2024 Jul; 150(7):357. PubMed ID: 39034327 [TBL] [Abstract][Full Text] [Related]
6. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma. Wei M; Lü L; Lin P; Chen Z; Quan Z; Tang Z Cancer Lett; 2016 Sep; 379(2):253-61. PubMed ID: 26940139 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive analysis of genomic mutation signature and tumor mutation burden for prognosis of intrahepatic cholangiocarcinoma. Zhang R; Li Q; Fu J; Jin Z; Su J; Zhang J; Chen C; Geng Z; Zhang D BMC Cancer; 2021 Feb; 21(1):112. PubMed ID: 33535978 [TBL] [Abstract][Full Text] [Related]
8. Expression of long non-coding RNA ANRIL predicts a poor prognosis in intrahepatic cholangiocarcinoma. Angenard G; Merdrignac A; Louis C; Edeline J; Coulouarn C Dig Liver Dis; 2019 Sep; 51(9):1337-1343. PubMed ID: 31040073 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma. Yang G; Zong H Mol Med Rep; 2016 Jun; 13(6):4786-90. PubMed ID: 27082702 [TBL] [Abstract][Full Text] [Related]
10. Molecular genetics and targeted therapeutics in biliary tract carcinoma. Marks EI; Yee NS World J Gastroenterol; 2016 Jan; 22(4):1335-47. PubMed ID: 26819503 [TBL] [Abstract][Full Text] [Related]
11. Targeting FGFR in intrahepatic cholangiocarcinoma [iCCA]: leading the way for precision medicine in biliary tract cancer [BTC]? Aitcheson G; Mahipal A; John BV Expert Opin Investig Drugs; 2021 Apr; 30(4):463-477. PubMed ID: 33678096 [No Abstract] [Full Text] [Related]
16. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. Yang L; Niu K; Wang J; Shen W; Jiang R; Liu L; Song W; Wang X; Zhang X; Zhang R; Wei D; Fan M; Jia L; Tao K J Hepatol; 2024 Oct; 81(4):651-666. PubMed ID: 38679071 [TBL] [Abstract][Full Text] [Related]
18. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. Montal R; Sia D; Montironi C; Leow WQ; Esteban-Fabró R; Pinyol R; Torres-Martin M; Bassaganyas L; Moeini A; Peix J; Cabellos L; Maeda M; Villacorta-Martin C; Tabrizian P; Rodriguez-Carunchio L; Castellano G; Sempoux C; Minguez B; Pawlik TM; Labgaa I; Roberts LR; Sole M; Fiel MI; Thung S; Fuster J; Roayaie S; Villanueva A; Schwartz M; Llovet JM J Hepatol; 2020 Aug; 73(2):315-327. PubMed ID: 32173382 [TBL] [Abstract][Full Text] [Related]
19. Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis. Mancarella S; Serino G; Dituri F; Cigliano A; Ribback S; Wang J; Chen X; Calvisi DF; Giannelli G Cell Death Differ; 2020 Aug; 27(8):2330-2343. PubMed ID: 32042099 [TBL] [Abstract][Full Text] [Related]
20. Multiplexed gene expression profiling identifies the FGFR4 pathway as a novel biomarker in intrahepatic cholangiocarcinoma. Yoo C; Kang J; Kim D; Kim KP; Ryoo BY; Hong SM; Hwang JJ; Jeong SY; Hwang S; Kim KH; Lee YJ; Hoeflich KP; Schmidt-Kittler O; Miller S; Choi EK Oncotarget; 2017 Jun; 8(24):38592-38601. PubMed ID: 28445152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]