These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Three-dimensional printed models in congenital heart disease. Cantinotti M; Valverde I; Kutty S Int J Cardiovasc Imaging; 2017 Jan; 33(1):137-144. PubMed ID: 27677762 [TBL] [Abstract][Full Text] [Related]
10. Surgical planning for a complex double-outlet right ventricle using 3D printing. Bhatla P; Tretter JT; Chikkabyrappa S; Chakravarti S; Mosca RS Echocardiography; 2017 May; 34(5):802-804. PubMed ID: 28317159 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery-A Multidisciplinary Team-Learning Experience. Kiraly L; Shah NC; Abdullah O; Al-Ketan O; Rowshan R Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827702 [TBL] [Abstract][Full Text] [Related]
12. Impact of 3D Printouts in Optimizing Surgical Results for Complex Congenital Heart Disease. Han F; Co-Vu J; Lopez-Colon D; Forder J; Bleiweis M; Reyes K; DeGroff C; Chandran A World J Pediatr Congenit Heart Surg; 2019 Sep; 10(5):533-538. PubMed ID: 31496399 [TBL] [Abstract][Full Text] [Related]
13. [Applications of multi-slice computed tomography imaging in children with congenital heart diseases]. Shiraishi I Kyobu Geka; 2007 Jul; 60(8 Suppl):619-26. PubMed ID: 17763660 [TBL] [Abstract][Full Text] [Related]
14. Pre- and postoperative evaluation of partial anomalous pulmonary venous return: by 3-dimensional cardiovascular magnetic resonance imaging and cardiovascular computed tomography. Crestanello JA; Daniels C; Franco V; Raman SV Tex Heart Inst J; 2010; 37(1):113-5. PubMed ID: 20200642 [TBL] [Abstract][Full Text] [Related]
15. Cardiac 3D printing for better understanding of congenital heart disease. Hadeed K; Acar P; Dulac Y; Cuttone F; Alacoque X; Karsenty C Arch Cardiovasc Dis; 2018 Jan; 111(1):1-4. PubMed ID: 29158165 [No Abstract] [Full Text] [Related]
16. Three-dimensional printing and virtual surgery for congenital heart procedural planning. Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634 [TBL] [Abstract][Full Text] [Related]
17. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments. Lau IWW; Liu D; Xu L; Fan Z; Sun Z PLoS One; 2018; 13(3):e0194333. PubMed ID: 29561912 [TBL] [Abstract][Full Text] [Related]
18. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. Riesenkampff E; Rietdorf U; Wolf I; Schnackenburg B; Ewert P; Huebler M; Alexi-Meskishvili V; Anderson RH; Engel N; Meinzer HP; Hetzer R; Berger F; Kuehne T J Thorac Cardiovasc Surg; 2009 Sep; 138(3):571-80. PubMed ID: 19698837 [TBL] [Abstract][Full Text] [Related]
19. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease. Gosnell J; Pietila T; Samuel BP; Kurup HK; Haw MP; Vettukattil JJ J Digit Imaging; 2016 Dec; 29(6):665-669. PubMed ID: 27072399 [TBL] [Abstract][Full Text] [Related]
20. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease. Farooqi KM; Mahmood F J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]