BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28163135)

  • 1. A Mechanism-Based Pharmacokinetic Enzyme Turnover Model for Dichloroacetic Acid Autoinhibition in Rats.
    Jiang Y; Milavetz G; James MO; An G
    J Pharm Sci; 2017 May; 106(5):1396-1404. PubMed ID: 28163135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model Informed Dose Optimization of Dichloroacetate for the Treatment of Congenital Lactic Acidosis in Children.
    Mangal N; James MO; Stacpoole PW; Schmidt S
    J Clin Pharmacol; 2018 Feb; 58(2):212-220. PubMed ID: 28914978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Multiple Doses of Dichloroacetate on GSTZ1 Expression and Activity in Liver and Extrahepatic Tissues of Young and Adult Rats.
    Squirewell EJ; Smeltz MG; Rowland-Faux L; Horne LP; Stacpoole PW; James MO
    Drug Metab Dispos; 2020 Nov; 48(11):1217-1223. PubMed ID: 32873593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Glutathione Transferase Zeta 1 Is Inactivated More Rapidly by Dichloroacetate than the Cytosolic Enzyme in Adult and Juvenile Rat Liver.
    Smeltz MG; Hu Z; Zhong G; Jahn SC; Rowland-Faux L; Horne LP; Stacpoole PW; James MO
    Chem Res Toxicol; 2019 Oct; 32(10):2042-2052. PubMed ID: 31524376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride and other anions inhibit dichloroacetate-induced inactivation of human liver GSTZ1 in a haplotype-dependent manner.
    Zhong G; Li W; Gu Y; Langaee T; Stacpoole PW; James MO
    Chem Biol Interact; 2014 May; 215():33-9. PubMed ID: 24632415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dose pharmacokinetics and oral bioavailability of dichloroacetate in naive and GST-zeta-depleted rats.
    Saghir SA; Schultz IR
    Environ Health Perspect; 2002 Aug; 110(8):757-63. PubMed ID: 12153755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of Rats to Multiple Oral Doses of Dichloroacetate Results in Upregulation of Hepatic Glutathione Transferases and NAD(P)H Dehydrogenase [Quinone] 1.
    Squirewell EJ; Mareus R; Horne LP; Stacpoole PW; James MO
    Drug Metab Dispos; 2020 Nov; 48(11):1224-1230. PubMed ID: 32873592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative description of suicide inhibition of dichloroacetic acid in rats and mice.
    Keys DA; Schultz IR; Mahle DA; Fisher JW
    Toxicol Sci; 2004 Dec; 82(2):381-93. PubMed ID: 15375292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1.
    James MO; Jahn SC; Zhong G; Smeltz MG; Hu Z; Stacpoole PW
    Pharmacol Ther; 2017 Feb; 170():166-180. PubMed ID: 27771434
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Tian DD; Bennett SK; Coupland LA; Forwood K; Lwin Y; Pooryousef N; Tea I; Truong TT; Neeman T; Crispin P; D'Rozario J; Blackburn AC
    Pharmacol Res Perspect; 2019 Dec; 7(6):e00526. PubMed ID: 31624634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacogenetic considerations with dichloroacetate dosing.
    James MO; Stacpoole PW
    Pharmacogenomics; 2016 May; 17(7):743-53. PubMed ID: 27143230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of glutathione transferase zeta by dichloroacetic acid and other fluorine-lacking alpha-haloalkanoic acids.
    Anderson WB; Board PG; Gargano B; Anders MW
    Chem Res Toxicol; 1999 Dec; 12(12):1144-9. PubMed ID: 10604862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized Dosing of Dichloroacetate Using GSTZ1 Clinical Genotyping Assay.
    Langaee T; Wagner R; Horne LP; Lawson LA; Becker C; Shahin M; Starostik P; Stacpoole PW
    Genet Test Mol Biomarkers; 2018 Apr; 22(4):266-269. PubMed ID: 29641284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haplotype variations in glutathione transferase zeta 1 influence the kinetics and dynamics of chronic dichloroacetate in children.
    Shroads AL; Coats BS; McDonough CW; Langaee T; Stacpoole PW
    J Clin Pharmacol; 2015 Jan; 55(1):50-5. PubMed ID: 25079374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of maleylacetoacetic acid metabolism in rats with dichloroacetic Acid-induced glutathione transferase zeta deficiency.
    Lantum HB; Cornejo J; Pierce RH; Anders MW
    Toxicol Sci; 2003 Jul; 74(1):192-202. PubMed ID: 12730618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nephrotoxicity of chlorofluoroacetic acid in rats.
    Lantum HB; Baggs RB; Krenitsky DM; Anders MW
    Toxicol Sci; 2002 Dec; 70(2):261-8. PubMed ID: 12441371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dichloroacetate toxicokinetics and disruption of tyrosine catabolism in B6C3F1 mice: dose-response relationships and age as a modifying factor.
    Schultz IR; Merdink JL; Gonzalez-Leon A; Bull RJ
    Toxicology; 2002 May; 173(3):229-47. PubMed ID: 11960676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics of oral dichloroacetate in dogs.
    Maisenbacher HW; Shroads AL; Zhong G; Daigle AD; Abdelmalak MM; Samper IS; Mincey BD; James MO; Stacpoole PW
    J Biochem Mol Toxicol; 2013 Dec; 27(12):522-5. PubMed ID: 24038869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of dichloroacetic acid kinetics in human--a physiologically based pharmacokinetic modeling investigation.
    Li T; Schultz I; Keys DA; Campbell JL; Fisher JW
    Toxicology; 2008 Mar; 245(1-2):35-48. PubMed ID: 18242812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of human GSTZ1 gene haplotype variations on GSTZ1 expression.
    Langaee TY; Zhong G; Li W; Hamadeh I; Solayman MH; McDonough CW; Stacpoole PW; James MO
    Pharmacogenet Genomics; 2015 May; 25(5):239-45. PubMed ID: 25738370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.