These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

655 related articles for article (PubMed ID: 28163238)

  • 1. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
    Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical applications.
    Biesiekierski A; Lin J; Li Y; Ping D; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2016 Mar; 32():336-347. PubMed ID: 26689463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinodal Zr-Nb alloys with ultrahigh elastic admissible strain and low magnetic susceptibility for orthopedic applications.
    Hua Z; Zhang D; Guo L; Lin J; Li Y; Wen C
    Acta Biomater; 2024 Aug; 184():444-460. PubMed ID: 38897338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti-Nb-Zr-Ta-Sn.
    Khrunyk YY; Ehnert S; Grib SV; Illarionov AG; Stepanov SI; Popov AA; Ryzhkov MA; Belikov SV; Xu Z; Rupp F; Nüssler AK
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental titanium alloys for dental applications.
    Faria AC; Rodrigues RC; Rosa AL; Ribeiro RF
    J Prosthet Dent; 2014 Dec; 112(6):1448-60. PubMed ID: 25088209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti-Nb-Ru alloys.
    Biesiekierski A; Lin J; Li Y; Ping D; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2017 Jan; 48():461-467. PubMed ID: 27746362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation.
    Du P; Cui Z; Xiang T; Li Y; Zhang L; Cai Z; Zhao M; Xie G
    Acta Biomater; 2024 Jun; 181():469-482. PubMed ID: 38723926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.
    Liu Y; Li K; Wu H; Song M; Wang W; Li N; Tang H
    J Mech Behav Biomed Mater; 2015 Nov; 51():302-12. PubMed ID: 26275506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti-Zr alloys for dental application.
    Wang B; Ruan W; Liu J; Zhang T; Yang H; Ruan J
    J Biomater Appl; 2019 Jan; 33(6):766-775. PubMed ID: 30396325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications.
    Ozan S; Lin J; Li Y; Wen C
    J Mech Behav Biomed Mater; 2017 Nov; 75():119-127. PubMed ID: 28711024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytocompatibility, stability and osteogenic activity of powder metallurgy Ta-xZr alloys as dental implant materials.
    Ou P; Liu J; Hao C; He R; Chang L; Ruan J
    J Biomater Appl; 2021 Feb; 35(7):790-798. PubMed ID: 32854569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.
    Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R
    J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications.
    Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS
    J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy.
    Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K
    J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.
    Wang P; Feng Y; Liu F; Wu L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
    Ozan S; Lin J; Li Y; Ipek R; Wen C
    Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study.
    Wang X; Meng X; Chu S; Xiang X; Liu Z; Zhao J; Zhou Y
    J Mater Sci Mater Med; 2016 Sep; 27(9):139. PubMed ID: 27534399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI compatible Nb-Ta-Zr alloys used for vascular stents: optimization for mechanical properties.
    Li HZ; Xu J
    J Mech Behav Biomed Mater; 2014 Apr; 32():166-176. PubMed ID: 24463475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.
    Kesteven J; Kannan MB; Walter R; Khakbaz H; Choe HC
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():226-31. PubMed ID: 25491981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.