These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2816336)

  • 21. Dynamic changes in hair cell stereocilia and cochlear transduction after noise exposure.
    Wang H; Yin S; Yu Z; Huang Y; Wang J
    Biochem Biophys Res Commun; 2011 Jun; 409(4):616-21. PubMed ID: 21616058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Permanent noise-induced damage to stereocilia: a scanning electron microscopic study of the lizard's cochlea.
    Mulroy MJ
    Scan Electron Microsc; 1986; (Pt 4):1451-7. PubMed ID: 3810020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of the auditory receptors of the rat: a SEM study.
    Zine A; Romand R
    Brain Res; 1996 May; 721(1-2):49-58. PubMed ID: 8793083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic trauma in the guinea pig cochlea: early changes in ultrastructure and neural threshold.
    Robertson D; Johnstone BM
    Hear Res; 1980 Aug; 3(2):167-79. PubMed ID: 7419484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in hair bundles associated with type I and type II vestibular hair cells of the guinea pig saccule.
    Lapeyre P; Guilhaume A; Cazals Y
    Acta Otolaryngol; 1992; 112(4):635-42. PubMed ID: 1442010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent.
    Tilney LG; Egelman EH; DeRosier DJ; Saunder JC
    J Cell Biol; 1983 Mar; 96(3):822-34. PubMed ID: 6682111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrastructure of the horseshoe bat's organ of Corti. I. Scanning electron microscopy.
    Vater M; Lenoir M
    J Comp Neurol; 1992 Apr; 318(4):367-79. PubMed ID: 1578008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early development of cochlear hair cell stereociliary surface morphology.
    Sobin A; Anniko M
    Arch Otorhinolaryngol; 1984; 241(1):55-64. PubMed ID: 6517743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atrophy of middle and short stereocilia on outer hair cells of guinea pig cochleas with experimentally induced hydrops.
    Horner KC; Guilhaume A; Cazals Y
    Hear Res; 1988 Jan; 32(1):41-8. PubMed ID: 3350773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative evaluation of scanning electron microscopy-examined ciliary morphological changes in control and noise exposed guinea pig cochleas.
    Rydmarker S; Nilsson P; Dunn DE; Lindqvist C
    Scanning Microsc; 1989 Dec; 3(4):1253-64. PubMed ID: 2633342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the stereocilia and non-monotonic pattern of threshold shift after exposure to impulse noise.
    Gao WY; Ding DL; Zheng XY; Ruan FM
    Hear Res; 1991 Aug; 54(2):296-304. PubMed ID: 1938630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles.
    Kaltenbach JA; Falzarano PR; Simpson TH
    J Comp Neurol; 1994 Dec; 350(2):187-98. PubMed ID: 7884037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Actin filaments, stereocilia, and hair cells of the bird cochlea. III. The development and differentiation of hair cells and stereocilia.
    Tilney LG; Tilney MS; Saunders JS; DeRosier DJ
    Dev Biol; 1986 Jul; 116(1):100-18. PubMed ID: 3732601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction.
    Pickles JO; Comis SD; Osborne MP
    Hear Res; 1984 Aug; 15(2):103-12. PubMed ID: 6436216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of early fixation in preservation of human cochlear and vestibular sensory hair bundles.
    Comis SD; Osborne MP; O'Connell J; Johnson AP
    Acta Otolaryngol; 1990; 109(5-6):361-8. PubMed ID: 2113759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Helical structure of hair cell stereocilia tip links in the chinchilla cochlea.
    Tsuprun V; Santi P
    J Assoc Res Otolaryngol; 2000 Nov; 1(3):224-31. PubMed ID: 11545228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Further observations on the fine structure of tip links between stereocilia of the guinea pig cochlea.
    Osborne MP; Comis SD; Pickles JO
    Hear Res; 1988 Sep; 35(1):99-108. PubMed ID: 3182414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geometrical array of the vestibular sensory hair bundle.
    Bagger-Sjöbäck D; Takumida M
    Acta Otolaryngol; 1988; 106(5-6):393-403. PubMed ID: 3264654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The distribution of hair cell bundle lengths and orientations suggests an unexpected pattern of hair cell stimulation in the chick cochlea.
    Tilney MS; Tilney LG; DeRosier DJ
    Hear Res; 1987; 25(2-3):141-51. PubMed ID: 3558125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stereociliary cross-links between adjacent inner hair cells.
    Hackney CM; Furness DN; Sayers DL
    Hear Res; 1988 Jul; 34(2):207-11. PubMed ID: 3170364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.