These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28163871)

  • 1. Reynolds number influence on the formation of vortical structures on a pitching flat plate.
    Widmann A; Tropea C
    Interface Focus; 2017 Feb; 7(1):20160079. PubMed ID: 28163871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
    Lu Y; Shen GX
    J Exp Biol; 2008 Apr; 211(Pt 8):1221-30. PubMed ID: 18375846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The leading-edge vortex of swift wing-shaped delta wings.
    Muir RE; Arredondo-Galeana A; Viola IM
    R Soc Open Sci; 2017 Aug; 4(8):170077. PubMed ID: 28878968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual leading-edge vortices on flapping wings.
    Lu Y; Shen GX; Lai GJ
    J Exp Biol; 2006 Dec; 209(Pt 24):5005-16. PubMed ID: 17142689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leading-edge vortices over swept-back wings with varying sweep geometries.
    Lambert WB; Stanek MJ; Gurka R; Hackett EE
    R Soc Open Sci; 2019 Jul; 6(7):190514. PubMed ID: 31417749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The flow separation delay in the boundary layer by induced vortices.
    Chaudhry IA; Sultan T; Siddiqui FA; Farhan M; Asim M
    J Vis (Tokyo); 2017; 20(2):251-261. PubMed ID: 28515659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional multiscale flow structures behind a wall-mounted short cylinder based on tomographic particle image velocimetry and three-dimensional orthogonal wavelet transform.
    Rinoshika H; Rinoshika A; Wang JJ
    Phys Rev E; 2020 Sep; 102(3-1):033101. PubMed ID: 33075884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla).
    Salcedo E; Treviño C; Vargas RO; Martínez-Suástegui L
    J Exp Biol; 2013 Jun; 216(Pt 11):2017-30. PubMed ID: 23430990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the transitional flow field over a fixed hummingbird wing.
    Elimelech Y; Ellington CP
    J Exp Biol; 2013 Jan; 216(Pt 2):303-18. PubMed ID: 22996450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds.
    Hubel TY; Tropea C
    J Exp Biol; 2010 Jun; 213(11):1930-9. PubMed ID: 20472780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental study of trailing edge noise from a pitching airfoil.
    Zhou T; Sun Y; Fattah R; Zhang X; Huang X
    J Acoust Soc Am; 2019 Apr; 145(4):2009. PubMed ID: 31046340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Junction flow inside and around three-row cylindrical group on rigid flat surface.
    Voskoboinick V; Onyshchenko A; Voskoboinyk O; Makarenkova A; Voskobiinyk A
    Heliyon; 2022 Dec; 8(12):e12595. PubMed ID: 36643326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex scale of unsteady separation on a pitching airfoil.
    Fuchiwaki M; Tanaka K
    Ann N Y Acad Sci; 2002 Oct; 972():61-6. PubMed ID: 12495998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size.
    Bhat SS; Zhao J; Sheridan J; Hourigan K; Thompson MC
    R Soc Open Sci; 2018 Jul; 5(7):172197. PubMed ID: 30109056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-sustaining process through streak generation in a flat-plate boundary layer.
    Duriez T; Aider JL; Wesfreid JE
    Phys Rev Lett; 2009 Oct; 103(14):144502. PubMed ID: 19905571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.