These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28163877)

  • 1. Wind and water tunnel testing of a morphing aquatic micro air vehicle.
    Siddall R; Ortega Ancel A; Kovač M
    Interface Focus; 2017 Feb; 7(1):20160085. PubMed ID: 28163877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.
    Siddall R; Kovač M
    Bioinspir Biomim; 2014 Sep; 9(3):031001. PubMed ID: 24615533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet.
    Machovsky-Capuska GE; Howland HC; Raubenheimer D; Vaughn-Hirshorn R; Würsig B; Hauber ME; Katzir G
    Proc Biol Sci; 2012 Oct; 279(1745):4118-25. PubMed ID: 22874749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired morphing wings: mechanical design and wind tunnel experiments.
    Kilian L; Shahid F; Zhao JS; Nayeri CN
    Bioinspir Biomim; 2022 Jul; 17(4):. PubMed ID: 35609562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot.
    Chen Y; Wang H; Helbling EF; Jafferis NT; Zufferey R; Ong A; Ma K; Gravish N; Chirarattananon P; Kovac M; Wood RJ
    Sci Robot; 2017 Oct; 2(11):. PubMed ID: 33157886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system.
    Stewart W; Weisler W; MacLeod M; Powers T; Defreitas A; Gritter R; Anderson M; Peters K; Gopalarathnam A; Bryant M
    Bioinspir Biomim; 2018 Aug; 13(5):056013. PubMed ID: 30024386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of wing loading on the trade-off between pursuit-diving and flight in common guillemots and razorbills.
    Thaxter CB; Wanless S; Daunt F; Harris MP; Benvenuti S; Watanuki Y; Grémillet D; Hamer KC
    J Exp Biol; 2010 Apr; 213(Pt 7):1018-25. PubMed ID: 20228337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature-inspired in-flight foldable rotorcraft.
    Bhardwaj H; Cai X; Win LST; Foong S
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37207664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Manufacturing, and Testing of a New Concept for a Morphing Leading Edge using a Subsonic Blow Down Wind Tunnel.
    Communier D; Le Besnerais F; Botez RM; Wong T
    Biomimetics (Basel); 2019 Dec; 4(4):. PubMed ID: 31810231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Wing-Loading Correlates with Dive Performance in Birds, Suggesting a Strategy to Reduce Buoyancy.
    Lapsansky AB; Warrick DR; Tobalske BW
    Integr Comp Biol; 2022 Oct; 62(4):878-889. PubMed ID: 35810134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earwig-inspired foldable origami wing for micro air vehicle gliding.
    Ishiguro R; Kawasetsu T; Motoori Y; Paik J; Hosoda K
    Front Robot AI; 2023; 10():1255666. PubMed ID: 38023584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios.
    Sun J; Li P; Yan Y; Song F; Xu N; Zhang Z
    Beilstein J Nanotechnol; 2022; 13():845-856. PubMed ID: 36105689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airfoil Selection Procedure, Wind Tunnel Experimentation and Implementation of 6DOF Modeling on a Flying Wing Micro Aerial Vehicle.
    Shams TA; Shah SIA; Javed A; Hamdani SHR
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32486120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired morphing wings for extended flight envelope and roll control of small drones.
    Di Luca M; Mintchev S; Heitz G; Noca F; Floreano D
    Interface Focus; 2017 Feb; 7(1):20160092. PubMed ID: 28163882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To what extent is the foraging behaviour of aquatic birds constrained by their physiology?
    Green JA; Halsey LG; Butler PJ
    Physiol Biochem Zool; 2005; 78(5):766-81. PubMed ID: 16075394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles through empirical and numerical modelling of the common guillemot, Uria aalge.
    Lock RJ; Vaidyanathan R; Burgess SC; Loveless J
    Bioinspir Biomim; 2010 Dec; 5(4):046001. PubMed ID: 21057174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platform development and gliding optimization of a robotic flying fish with morphing pectoral fins.
    Chen D; Wu Z; Dong H; Meng Y; Yu J
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37075757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
    Chang E; Matloff LY; Stowers AK; Lentink D
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces.
    Li L; Wang S; Zhang Y; Song S; Wang C; Tan S; Zhao W; Wang G; Sun W; Yang F; Liu J; Chen B; Xu H; Nguyen P; Kovac M; Wen L
    Sci Robot; 2022 May; 7(66):eabm6695. PubMed ID: 35584203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.