These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 28163881)

  • 1. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.
    Gurka R; Krishnan K; Ben-Gida H; Kirchhefer AJ; Kopp GA; Guglielmo CG
    Interface Focus; 2017 Feb; 7(1):20160090. PubMed ID: 28163881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).
    Ben-Gida H; Kirchhefer A; Taylor ZJ; Bezner-Kerr W; Guglielmo CG; Kopp GA; Gurka R
    PLoS One; 2013; 8(11):e80086. PubMed ID: 24278243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamic performance of flapping wing with alula under different kinematics of complex flapping motion.
    Bao H; Song B; Ma D; Xue D
    Bioinspir Biomim; 2023 Dec; 19(1):. PubMed ID: 38011727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Spanwise Folding on the Aerodynamic Performance of a Passively Deformed Flapping Wing.
    Qi M; Ding M; Zhu W; Li S
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamics, sensing and control of insect-scale flapping-wing flight.
    Shyy W; Kang CK; Chirarattananon P; Ravi S; Liu H
    Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150712. PubMed ID: 27118897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple model of wake capture aerodynamics.
    Nabawy MRA
    J R Soc Interface; 2023 Sep; 20(206):20230282. PubMed ID: 37751875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Mosquito Aerodynamics for Imitation as a Small Robot and Flight in a Low-Density Environment.
    Singh B; Yidris N; Basri AA; Pai R; Ahmad KA
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34063196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leading-edge vortices over swept-back wings with varying sweep geometries.
    Lambert WB; Stanek MJ; Gurka R; Hackett EE
    R Soc Open Sci; 2019 Jul; 6(7):190514. PubMed ID: 31417749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of uniform vertical inflow perturbations on the performance of flapping wings.
    Mazharmanesh S; Stallard J; Medina A; Fisher A; Ando N; Tian FB; Young J; Ravi S
    R Soc Open Sci; 2021 Jun; 8(6):210471. PubMed ID: 34234957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of the Flight Control Method of a Bird-like Flapping-Wing Air Vehicle.
    Fang X; Wen Y; Gao Z; Gao K; Luo Q; Peng H; Du R
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrust enhancement and degradation mechanisms due to self-induced vibrations in bio-inspired flying robots.
    Deb D; Huang K; Verma A; Fouda M; Taha HE
    Sci Rep; 2023 Oct; 13(1):18317. PubMed ID: 37880321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.
    Dececchi TA; Larsson HC; Habib MB
    PeerJ; 2016; 4():e2159. PubMed ID: 27441115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of leading-edge serrations in controlling the flow over owls' wing.
    Saussaman T; Nafi A; Charland D; Ben-Gida H; Gurka R
    Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37650253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of transient aerodynamic forces acting on a ski jumper considering dynamic posture change from takeoff to landing.
    Yamamoto K; Nishino T; Bale R; Shimada T; Miyamoto N; Tsubokura M
    Sports Biomech; 2022 Dec; ():1-15. PubMed ID: 36510445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of shape and attachment position of biologging devices in Northern Bald Ibises.
    Mizrahy-Rewald O; Winkler N; Amann F; Neugebauer K; Voelkl B; Grogger HA; Ruf T; Fritz J
    Anim Biotelemetry; 2023; 11(1):8. PubMed ID: 38800510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasping extreme aerodynamics on a low-dimensional manifold.
    Fukami K; Taira K
    Nat Commun; 2023 Oct; 14(1):6480. PubMed ID: 37838743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrigendum: An analytical model and scaling of chordwise flexible flapping wings in forward flight (2016 Bioinspir. and Biomim. 12 016006).
    Kodali D; Kang CK
    Bioinspir Biomim; 2018 Aug; ():. PubMed ID: 30084386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Investigation of the Flow Past a Rotating Golf Ball and Its Comparison with a Rotating Smooth Sphere.
    Li J; Tsubokura M; Tsunoda M
    Flow Turbul Combust; 2017; 99(3):837-864. PubMed ID: 30069160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves.
    Newbolt JW; Lewis N; Bleu M; Wu J; Mavroyiakoumou C; Ramananarivo S; Ristroph L
    Nat Commun; 2024 Apr; 15(1):3462. PubMed ID: 38658577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical assessment of wake-based estimation of instantaneous lift in flapping flight of large birds.
    Colognesi V; Ronsse R; Chatelain P
    PLoS One; 2023; 18(5):e0284714. PubMed ID: 37141190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.