These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28163883)

  • 1. Rules to fly by: pigeons navigating horizontal obstacles limit steering by selecting gaps most aligned to their flight direction.
    Ros IG; Bhagavatula PS; Lin HT; Biewener AA
    Interface Focus; 2017 Feb; 7(1):20160093. PubMed ID: 28163883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Through the eyes of a bird: modelling visually guided obstacle flight.
    Lin HT; Ros IG; Biewener AA
    J R Soc Interface; 2014 Jul; 11(96):20140239. PubMed ID: 24812052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds.
    Tobalske B; Dial K
    J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap selection and steering during obstacle avoidance in pigeons.
    Pérez-Campanero Antolín N; Taylor GK
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36576032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wind and obstacle motion affect honeybee flight strategies in cluttered environments.
    Burnett NP; Badger MA; Combes SA
    J Exp Biol; 2020 Jul; 223(Pt 14):. PubMed ID: 32561633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigeons trade efficiency for stability in response to level of challenge during confined flight.
    Williams CD; Biewener AA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3392-6. PubMed ID: 25733863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia).
    Berg AM; Biewener AA
    J Exp Biol; 2010 May; 213(Pt 10):1651-8. PubMed ID: 20435815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Close encounters of three kinds: impacts of leg, wing and body collisions on flight performance in carpenter bees.
    Burnett NP; Combes SA
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37066861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanisms of lift enhancement in insect flight.
    Lehmann FO
    Naturwissenschaften; 2004 Mar; 91(3):101-22. PubMed ID: 15034660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting power-optimal kinematics of avian wings.
    Parslew B
    J R Soc Interface; 2015 Jan; 12(102):20140953. PubMed ID: 25392398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field.
    Burnett NP; Badger MA; Combes SA
    PLoS One; 2022; 17(3):e0265911. PubMed ID: 35325004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sideways maneuvers enable narrow aperture negotiation by free-flying hummingbirds.
    Badger MA; McClain K; Smiley A; Ye J; Dudley R
    J Exp Biol; 2023 Nov; 226(21):. PubMed ID: 37944479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.
    Crall JD; Ravi S; Mountcastle AM; Combes SA
    J Exp Biol; 2015 Sep; 218(Pt 17):2728-37. PubMed ID: 26333927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigeons (
    Ros IG; Biewener AA
    Front Neurosci; 2017; 11():655. PubMed ID: 29249929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics and biomimetics in insect-inspired flight systems.
    Liu H; Ravi S; Kolomenskiy D; Tanaka H
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding the gap: a brightness-based strategy for guidance in cluttered environments.
    Baird E; Dacke M
    Proc Biol Sci; 2016 Apr; 283(1828):. PubMed ID: 27053748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.