These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28164155)

  • 81. Overfishing and the replacement of demersal finfish by shellfish: an example from the English Channel.
    Molfese C; Beare D; Hall-Spencer JM
    PLoS One; 2014; 9(7):e101506. PubMed ID: 25010196
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Historic trophic decline in New England's coastal marine ecosystem.
    Willert MS; France CAM; Baldwin CC; Hay ME
    Oecologia; 2023 Jun; 202(2):455-463. PubMed ID: 37335365
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific.
    Grantham BA; Chan F; Nielsen KJ; Fox DS; Barth JA; Huyer A; Lubchenco J; Menge BA
    Nature; 2004 Jun; 429(6993):749-54. PubMed ID: 15201908
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Comparison of modern and historical fish catches (AD 750-1400) to inform goals for marine protected areas and sustainable fisheries.
    McClanahan TR; Omukoto JO
    Conserv Biol; 2011 Oct; 25(5):945-55. PubMed ID: 21676028
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Spearfishing to depletion: evidence from temperate reef fishes in Chile.
    Godoy N; Gelcich LS; Vásquez JA; Castilla JC
    Ecol Appl; 2010 Sep; 20(6):1504-11. PubMed ID: 20945755
    [TBL] [Abstract][Full Text] [Related]  

  • 86. High resolution assessment of commercial fisheries activity along the US West Coast using Vessel Monitoring System data with a case study using California groundfish fisheries.
    Wang YH; Ruttenberg BI; Walter RK; Pendleton F; Samhouri JF; Liu OR; White C
    PLoS One; 2024; 19(6):e0298868. PubMed ID: 38843128
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.
    Litzow MA; Mueter FJ; Hobday AJ
    Glob Chang Biol; 2014 Jan; 20(1):38-50. PubMed ID: 23996901
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Short- and long-term impacts of variable hypoxia exposures on kelp forest sea urchins.
    Low NHN; Micheli F
    Sci Rep; 2020 Feb; 10(1):2632. PubMed ID: 32060309
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Estimating the impacts of fishing on dependent predators: a case study in the California Current.
    Field JC; MacCall AD; Bradley RW; Sydeman WJ
    Ecol Appl; 2010 Dec; 20(8):2223-36. PubMed ID: 21265453
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Territorial user rights for fisheries as ancillary instruments for marine coastal conservation in Chile.
    Gelcich S; Fernández M; Godoy N; Canepa A; Prado L; Castilla JC
    Conserv Biol; 2012 Dec; 26(6):1005-15. PubMed ID: 22971114
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fishing and habitat condition differentially affect size spectra slopes of coral reef fishes.
    Carvalho PG; Setiawan F; Fahlevy K; Subhan B; Madduppa H; Zhu G; Humphries AT
    Ecol Appl; 2021 Jul; 31(5):e02345. PubMed ID: 33817898
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Spatial ecology of the Giant Sea Bass,
    Blincow KM; Elstner JT; Ben-Aderet N; Bellquist LF; Nosal AP; Semmens BX
    PeerJ; 2023; 11():e16551. PubMed ID: 38144197
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The origins of intensive marine fishing in medieval Europe: the English evidence.
    Barrett JH; Locker AM; Roberts CM
    Proc Biol Sci; 2004 Dec; 271(1556):2417-21. PubMed ID: 15590590
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean.
    Newsome SD; Etnier MA; Gifford-Gonzalez D; Phillips DL; van Tuinen M; Hadly EA; Costa DP; Kennett DJ; Guilderson TP; Koch PL
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9709-14. PubMed ID: 17526720
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.
    Ling SD; Kriegisch N; Woolley B; Reeves SE
    Ecology; 2019 Feb; 100(2):e02577. PubMed ID: 30707451
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures.
    Starr RM; Gleason MG; Marks CI; Kline D; Rienecke S; Denney C; Tagini A; Field JC
    PLoS One; 2016; 11(12):e0168645. PubMed ID: 28002499
    [TBL] [Abstract][Full Text] [Related]  

  • 97. What are we protecting? Fisher behavior and the unintended consequences of spatial closures as a fishery management tool.
    Abbott JK; Haynie AC
    Ecol Appl; 2012 Apr; 22(3):762-77. PubMed ID: 22645809
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Climate driven changes in subtidal kelp forest communities in NW Spain.
    Voerman SE; Llera E; Rico JM
    Mar Environ Res; 2013 Sep; 90():119-27. PubMed ID: 23948150
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Indirect effects of sea otters on rockfish (Sebastes spp.) in giant kelp forests.
    Markel RW; Shurin JB
    Ecology; 2015 Nov; 96(11):2877-90. PubMed ID: 27070008
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Integrating economic dynamics into ecological networks: The case of fishery sustainability.
    Glaum P; Cocco V; Valdovinos FS
    Sci Adv; 2020 Nov; 6(45):. PubMed ID: 33148659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.