These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28164183)

  • 41. Ternary Ionic Liquid Analogues as Electrolytes for Ambient and Low-Temperature Rechargeable Aluminum Batteries.
    Wang J; Schoetz T; Gordon LW; Biddinger EJ; Messinger RJ
    ACS Appl Energy Mater; 2024 Jul; 7(13):5438-5446. PubMed ID: 38994437
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.
    Zhao T; She S; Ji X; Guo X; Jin W; Zhu R; Dang A; Li H; Li T; Wei B
    Sci Rep; 2016 Sep; 6():33833. PubMed ID: 27671848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries.
    Venkata Narayanan NS; Ashokraj BV; Sampath S
    J Colloid Interface Sci; 2010 Feb; 342(2):505-12. PubMed ID: 19914628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rechargeable Sodium-Ion Battery: High-Capacity Ammonium Vanadate Cathode with Enhanced Stability at High Rate.
    Sarkar A; Sarkar S; Sarkar T; Kumar P; Bharadwaj MD; Mitra S
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17044-53. PubMed ID: 26189927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding the Oxidation and Reduction Reactions of Sulfur in Rechargeable Aluminum-Sulfur Batteries with Deep Eutectic Solvent and Ionic Liquid Electrolytes.
    Bian Y; Jiang W; Zhang Y; Zhao L; Wang X; Lv Z; Zhou S; Han Y; Chen H; Lin MC
    ChemSusChem; 2022 Jan; 15(1):e202101398. PubMed ID: 34532988
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.
    Peng C; Guan C; Lin J; Zhang S; Bao H; Wang Y; Xiao G; Chen GZ; Wang JQ
    ChemSusChem; 2018 Jun; 11(11):1880-1886. PubMed ID: 29667363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries.
    Pan CJ; Yuan C; Zhu G; Zhang Q; Huang CJ; Lin MC; Angell M; Hwang BJ; Kaghazchi P; Dai H
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5670-5675. PubMed ID: 29760096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A high-performance Cu-Al dual-ion battery realized by high-concentration Cl
    Tan M; Qin Y; Wang Y; Zhang F; Lei X
    Sci Rep; 2022 Nov; 12(1):18714. PubMed ID: 36333515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates.
    Wang W; Yu C; Lin Z; Hou J; Zhu H; Jiao S
    Nanoscale; 2013 Jan; 5(2):594-9. PubMed ID: 23203161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode.
    Kang W; Tang Y; Li W; Yang X; Xue H; Yang Q; Lee CS
    Nanoscale; 2015 Jan; 7(1):225-31. PubMed ID: 25406536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.
    Cho S; Ahn YK; Yin Z; You DJ; Kim H; Piao Y; Yoo J; Kim YS
    Chemistry; 2017 Aug; 23(48):11629-11635. PubMed ID: 28653431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery.
    Wang H; Gu S; Bai Y; Chen S; Wu F; Wu C
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27444-27448. PubMed ID: 27696799
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries.
    Deng C; Zhang S; Wu Y
    Nanoscale; 2015 Jan; 7(2):487-91. PubMed ID: 25407134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Locally Concentrated Deep Eutectic Liquids Electrolytes for Low-Polarization Aluminum Metal Batteries.
    Xu C; Diemant T; Liu X; Passerini S
    Adv Mater; 2024 Jun; 36(24):e2400263. PubMed ID: 38412289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries.
    Wang S; Tu J; Yuan Y; Ma R; Jiao S
    Phys Chem Chem Phys; 2016 Jan; 18(4):3204-13. PubMed ID: 26744041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries.
    Lin N; Han Y; Wang L; Zhou J; Zhou J; Zhu Y; Qian Y
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3822-5. PubMed ID: 25631549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clusters of α-LiFeO2 nanoparticles incorporated into multi-walled carbon nanotubes: a lithium-ion battery cathode with enhanced lithium storage properties.
    Rahman MM; Glushenkov AM; Chen Z; Dai XJ; Ramireddy T; Chen Y
    Phys Chem Chem Phys; 2013 Dec; 15(46):20371-8. PubMed ID: 24173443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.