These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28164183)

  • 61. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.
    Yu Z; Kang Z; Hu Z; Lu J; Zhou Z; Jiao S
    Chem Commun (Camb); 2016 Aug; 52(68):10427-30. PubMed ID: 27487940
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lithium-Rich Layered Oxide Li1.18 Ni0.15 Co0.15 Mn0.52 O2 as the Cathode Material for Hybrid Sodium-Ion Batteries.
    Wei Z; Gao Y; Wang L; Zhang C; Bian X; Fu Q; Wang C; Wei Y; Du F; Chen G
    Chemistry; 2016 Aug; 22(33):11610-6. PubMed ID: 27320123
    [TBL] [Abstract][Full Text] [Related]  

  • 63. One-Dimensional Cu
    Jiang J; Li H; Fu T; Hwang BJ; Li X; Zhao J
    ACS Appl Mater Interfaces; 2018 May; 10(21):17942-17949. PubMed ID: 29718651
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte.
    Reed LD; Ortiz SN; Xiong M; Menke EJ
    Chem Commun (Camb); 2015 Oct; 51(76):14397-400. PubMed ID: 26271479
    [TBL] [Abstract][Full Text] [Related]  

  • 67. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.
    Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y
    Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Facile synthesis of graphite nitrate-like ammonium vanadium bronzes and their graphene composites for sodium-ion battery cathodes.
    Fei H; Li H; Li Z; Feng W; Liu X; Wei M
    Dalton Trans; 2014 Nov; 43(43):16522-7. PubMed ID: 25260028
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Low-Cost and Air-Stable Rechargeable Aluminum-Ion Battery.
    Meng P; Huang J; Yang Z; Wang F; Lv T; Zhang J; Fu C; Xiao W
    Adv Mater; 2022 Feb; 34(8):e2106511. PubMed ID: 34873764
    [TBL] [Abstract][Full Text] [Related]  

  • 70. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte.
    Inoishi A; Ida S; Uratani S; Okano T; Ishihara T
    Phys Chem Chem Phys; 2012 Oct; 14(37):12818-22. PubMed ID: 22880205
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries.
    Hu X; Zhu Z; Cheng F; Tao Z; Chen J
    Nanoscale; 2015 Jul; 7(28):11833-40. PubMed ID: 26119364
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Flexible binder-free metal fibril mat-supported silicon anode for high-performance lithium-ion batteries.
    Song S; Kim SW; Lee DJ; Lee YG; Kim KM; Kim CH; Park JK; Lee YM; Cho KY
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11544-9. PubMed ID: 25020188
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries.
    Ma J; Zhou E; Fan C; Wu B; Li C; Lu ZH; Li J
    Chem Commun (Camb); 2018 May; 54(44):5578-5581. PubMed ID: 29766154
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries.
    Hwang JY; Oh SM; Myung ST; Chung KY; Belharouak I; Sun YK
    Nat Commun; 2015 Apr; 6():6865. PubMed ID: 25882619
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.
    Smith K; Parrish R; Wei W; Liu Y; Li T; Hu YH; Xiong H
    ChemSusChem; 2016 Jun; 9(12):1397-402. PubMed ID: 27121419
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fe
    Liang H; Liu Y; Zuo F; Zhang C; Yang L; Zhao L; Li Y; Xu Y; Wang T; Hua X; Zhu Y; Li H
    Chem Sci; 2022 Dec; 13(47):14191-14197. PubMed ID: 36540814
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural and Electrochemical Study of Hierarchical LiNi(1/3)Co(1/3)Mn(1/3)O2 Cathode Material for Lithium-Ion Batteries.
    Li L; Wang L; Zhang X; Xie M; Wu F; Chen R
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21939-47. PubMed ID: 26371492
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries.
    Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G
    Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
    Liu C; Shamie JS; Shaw LL; Sprenkle VL
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.