These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28164192)

  • 21. Artificial Photosynthesis with Polymeric Carbon Nitride: When Meeting Metal Nanoparticles, Single Atoms, and Molecular Complexes.
    Li Y; Kong T; Shen S
    Small; 2019 Aug; 15(32):e1900772. PubMed ID: 30977981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO
    Guo K; Hussain I; Jie GA; Fu Y; Zhang F; Zhu W
    J Environ Sci (China); 2023 Mar; 125():290-308. PubMed ID: 36375915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocatalytic reduction of CO2 on TiO2 and other semiconductors.
    Habisreutinger SN; Schmidt-Mende L; Stolarczyk JK
    Angew Chem Int Ed Engl; 2013 Jul; 52(29):7372-408. PubMed ID: 23765842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution.
    Yue X; Yi S; Wang R; Zhang Z; Qiu S
    Sci Rep; 2016 Feb; 6():22268. PubMed ID: 26923439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting.
    Reza Gholipour M; Dinh CT; Béland F; Do TO
    Nanoscale; 2015 May; 7(18):8187-208. PubMed ID: 25804291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphitic carbon nitride based nanocomposites: a review.
    Zhao Z; Sun Y; Dong F
    Nanoscale; 2015 Jan; 7(1):15-37. PubMed ID: 25407808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction.
    Wang S; Lin J; Wang X
    Phys Chem Chem Phys; 2014 Jul; 16(28):14656-60. PubMed ID: 24921181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors.
    Li H; Liu Y; Gao X; Fu C; Wang X
    ChemSusChem; 2015 Apr; 8(7):1189-96. PubMed ID: 25727782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO
    Zhong H; Hong Z; Yang C; Li L; Xu Y; Wang X; Wang R
    ChemSusChem; 2019 Oct; 12(19):4493-4499. PubMed ID: 31379104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks.
    Nemiwal M; Subbaramaiah V; Zhang TC; Kumar D
    Sci Total Environ; 2021 Mar; 762():144101. PubMed ID: 33360464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homogenous Boron-doping in Self-sensitized Carbon Nitride for Enhanced Visible-light Photocatalytic Activity.
    Gu Q; Liu J; Gao Z; Xue C
    Chem Asian J; 2016 Nov; 11(22):3169-3173. PubMed ID: 27654997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cocatalysts in Semiconductor-based Photocatalytic CO
    Ran J; Jaroniec M; Qiao SZ
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications.
    Wang L; Wang C; Hu X; Xue H; Pang H
    Chem Asian J; 2016 Dec; 11(23):3305-3328. PubMed ID: 27717173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2.
    Sekizawa K; Maeda K; Domen K; Koike K; Ishitani O
    J Am Chem Soc; 2013 Mar; 135(12):4596-9. PubMed ID: 23470246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single Au Atoms Anchored on Amino-Group-Enriched Graphitic Carbon Nitride for Photocatalytic CO
    Yang Y; Li F; Chen J; Fan J; Xiang Q
    ChemSusChem; 2020 Apr; 13(8):1979-1985. PubMed ID: 32092223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Review of Phosphorus Structures as CO
    Zhai R; Zhang L; Gu M; Zhao X; Zhang B; Cheng Y; Zhang J
    Small; 2023 May; 19(19):e2207840. PubMed ID: 36775943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts.
    Kuriki R; Sekizawa K; Ishitani O; Maeda K
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2406-9. PubMed ID: 25565575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Helical graphitic carbon nitrides with photocatalytic and optical activities.
    Zheng Y; Lin L; Ye X; Guo F; Wang X
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11926-30. PubMed ID: 25220601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.