These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28164337)
1. Evaluating the spore genome sizes of ferns and lycophytes: a flow cytometry approach. Kuo LY; Huang YJ; Chang J; Chiou WL; Huang YM New Phytol; 2017 Mar; 213(4):1974-1983. PubMed ID: 28164337 [TBL] [Abstract][Full Text] [Related]
2. Determining Genome Size from Spores of Seedless Vascular Plants. Kuo LY; Huang YM Bio Protoc; 2017 Jun; 7(11):e2322. PubMed ID: 34541084 [TBL] [Abstract][Full Text] [Related]
3. Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Ekrt L; Koutecký P Ann Bot; 2016 Jan; 117(1):97-106. PubMed ID: 26476395 [TBL] [Abstract][Full Text] [Related]
4. Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae). Dyer RJ; Pellicer J; Savolainen V; Leitch IJ; Schneider H BMC Plant Biol; 2013 Dec; 13():219. PubMed ID: 24354467 [TBL] [Abstract][Full Text] [Related]
5. An adventurous journey toward and away from fern apomixis: Insights from genome size and spore abortion patterns. Ekrt L; Férová A; Koutecký P; Vejvodová K; Hori K; Hornych O Am J Bot; 2024 May; 111(5):e16332. PubMed ID: 38762794 [TBL] [Abstract][Full Text] [Related]
6. Fern Spores-"Ready-to-Use" Standards for Plant Genome Size Estimation Using a Flow Cytometric Approach. Tang SK; Lee PH; Liou WT; Lin CH; Huang YM; Kuo LY Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616269 [TBL] [Abstract][Full Text] [Related]
7. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing. Henry TA; Bainard JD; Newmaster SG Genome; 2014 Oct; 57(10):555-66. PubMed ID: 25727714 [TBL] [Abstract][Full Text] [Related]
8. DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid. Bainard JD; Henry TA; Bainard LD; Newmaster SG Chromosome Res; 2011 Aug; 19(6):763-75. PubMed ID: 21847691 [TBL] [Abstract][Full Text] [Related]
9. Unreduced spore formation in a spontaneous chimeric pinnule in an artificially produced haploid Anisocampium niponicum (Athyriaceae, Polypodiales). Kawakami SM; Kawakami S J Plant Res; 2024 Mar; 137(2):161-165. PubMed ID: 38194203 [TBL] [Abstract][Full Text] [Related]
10. Genome size evolution of the extant lycophytes and ferns. Wang FG; Wang AH; Bai CK; Jin DM; Nie LY; Harris AJ; Che L; Wang JJ; Li SY; Xu L; Shen H; Gu YF; Shang H; Duan L; Zhang XC; Chen HF; Yan YH Plant Divers; 2022 Mar; 44(2):141-152. PubMed ID: 35505989 [TBL] [Abstract][Full Text] [Related]
11. Ever since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes. Haufler CH Am J Bot; 2014 Dec; 101(12):2036-42. PubMed ID: 25480700 [TBL] [Abstract][Full Text] [Related]
12. The first homosporous lycophyte genome revealed the association between the recent dynamic accumulation of LTR-RTs and genome size variation. Yu JG; Tang JY; Wei R; Lan MF; Xiang RC; Zhang XC; Xiang QP Plant Mol Biol; 2023 Aug; 112(6):325-340. PubMed ID: 37380791 [TBL] [Abstract][Full Text] [Related]
13. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Bai C; Alverson WS; Follansbee A; Waller DM Ann Bot; 2012 Dec; 110(8):1623-9. PubMed ID: 23100602 [TBL] [Abstract][Full Text] [Related]
14. The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Marchant DB; Sessa EB; Wolf PG; Heo K; Barbazuk WB; Soltis PS; Soltis DE Sci Rep; 2019 Dec; 9(1):18181. PubMed ID: 31796775 [TBL] [Abstract][Full Text] [Related]
15. Apomictic fern fathers: an experimental approach to the reproductive characteristics of sexual, apomict, and hybrid fern gametophytes. Hornych O; Férová A; Hori K; Košnar J; Ekrt L Am J Bot; 2022 Apr; 109(4):628-644. PubMed ID: 35072270 [TBL] [Abstract][Full Text] [Related]
16. Inferring the impacts of evolutionary history and ecological constraints on spore size and shape in the ferns. Barrington DS; Patel NR; Southgate MW Appl Plant Sci; 2020 Apr; 8(4):e11339. PubMed ID: 32351800 [TBL] [Abstract][Full Text] [Related]
17. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. Clark J; Hidalgo O; Pellicer J; Liu H; Marquardt J; Robert Y; Christenhusz M; Zhang S; Gibby M; Leitch IJ; Schneider H New Phytol; 2016 May; 210(3):1072-82. PubMed ID: 26756823 [TBL] [Abstract][Full Text] [Related]
18. A dormant resource for genome size estimation in ferns: C-value inference of the Ophioglossaceae using herbarium specimen spores. Kuo LY; Tang SK; Kao TT; Ebihara A; Fawcett S; Hsiao MC; Shinohara W; Dauphin B Appl Plant Sci; 2021; 9(11-12):e11452. PubMed ID: 34938613 [TBL] [Abstract][Full Text] [Related]
19. Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. Guo W; Zhu A; Fan W; Mower JP New Phytol; 2017 Jan; 213(1):391-403. PubMed ID: 27539928 [TBL] [Abstract][Full Text] [Related]
20. A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Qi X; Kuo LY; Guo C; Li H; Li Z; Qi J; Wang L; Hu Y; Xiang J; Zhang C; Guo J; Huang CH; Ma H Mol Phylogenet Evol; 2018 Oct; 127():961-977. PubMed ID: 29981932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]