These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 2816439)

  • 21. Glial strategy for metabolic shuttling and neuronal function.
    Deitmer JW
    Bioessays; 2000 Aug; 22(8):747-52. PubMed ID: 10918305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy.
    Bringmann A; Francke M; Pannicke T; Biedermann B; Faude F; Enzmann V; Wiedemann P; Reichelt W; Reichenbach A
    Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3316-23. PubMed ID: 10586958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of glutamate uptake transport by CO(2)/bicarbonate in the leech giant glial cell.
    Deitmer JW; Schneider HP
    Glia; 2000 Jun; 30(4):392-400. PubMed ID: 10797619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutamate accumulation by a clone of glial cells.
    Faivre-Bauman A; Rossier J; Benda P
    Brain Res; 1974 Aug; 76(2):371-5. PubMed ID: 4844462
    [No Abstract]   [Full Text] [Related]  

  • 26. Proliferative gliosis causes mislocation and inactivation of inwardly rectifying K(+) (Kir) channels in rabbit retinal glial cells.
    Ulbricht E; Pannicke T; Hollborn M; Raap M; Goczalik I; Iandiev I; Härtig W; Uhlmann S; Wiedemann P; Reichenbach A; Bringmann A; Francke M
    Exp Eye Res; 2008 Feb; 86(2):305-13. PubMed ID: 18078934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The developmental expression of K+ channels in retinal glial cells is associated with a decrease of osmotic cell swelling.
    Wurm A; Pannicke T; Iandiev I; Wiedemann P; Reichenbach A; Bringmann A
    Glia; 2006 Oct; 54(5):411-23. PubMed ID: 16886204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission.
    Bennay M; Langer J; Meier SD; Kafitz KW; Rose CR
    Glia; 2008 Aug; 56(10):1138-49. PubMed ID: 18442095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1).
    Limb GA; Salt TE; Munro PM; Moss SE; Khaw PT
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):864-9. PubMed ID: 11867609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of retinal glial cells on isolated rat retinal ganglion cells.
    Kashiwagi K; Iizuka Y; Araie M; Suzuki Y; Tsukahara S
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2686-94. PubMed ID: 11581217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of glutamatergic transmission by bergmann glial cells in rat cerebellum in situ.
    Bordey A; Sontheimer H
    J Neurophysiol; 2003 Feb; 89(2):979-88. PubMed ID: 12574474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switch of K+ buffering conditions in rabbit retinal Müller glial cells during postnatal development.
    Schopf S; Ruge H; Bringmann A; Reichenbach A; Skatchkov SN
    Neurosci Lett; 2004 Jul; 365(3):167-70. PubMed ID: 15246541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic patterns of brain assemblies. IV. Mixed systems. Steady states and their shifts. Cortical glial studies.
    Grossman RG
    Neurosci Res Program Bull; 1974 Mar; 12(1):128-32. PubMed ID: 4844498
    [No Abstract]   [Full Text] [Related]  

  • 34. Glial cell reactivity in a porcine model of retinal detachment.
    Iandiev I; Uckermann O; Pannicke T; Wurm A; Tenckhoff S; Pietsch UC; Reichenbach A; Wiedemann P; Bringmann A; Uhlmann S
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2161-71. PubMed ID: 16639028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glial cell-mediated spread of retinal degeneration during detachment: a hypothesis based upon studies in rabbits.
    Francke M; Faude F; Pannicke T; Uckermann O; Weick M; Wolburg H; Wiedemann P; Reichenbach A; Uhlmann S; Bringmann A
    Vision Res; 2005 Aug; 45(17):2256-67. PubMed ID: 15924940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina.
    Skatchkov SN; Krusek J; Reichenbach A; Orkand RK
    Glia; 1999 Aug; 27(2):171-80. PubMed ID: 10417816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Glia cells of the retina].
    Murakami M
    Shinkei Kenkyu No Shimpo; 1972 Feb; 16(1):94-6. PubMed ID: 5061967
    [No Abstract]   [Full Text] [Related]  

  • 38. Electrophysiological studies of retinal cell function.
    Tomita T
    Invest Ophthalmol; 1976 Mar; 15(3):171-87. PubMed ID: 767284
    [No Abstract]   [Full Text] [Related]  

  • 39. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram.
    Miller RF; Dowling JE
    J Neurophysiol; 1970 May; 33(3):323-41. PubMed ID: 5439340
    [No Abstract]   [Full Text] [Related]  

  • 40. Physiological properties of glial cells in the central nervous system of amphibia.
    Kuffler SW; Nicholls JG; Orkand RK
    J Neurophysiol; 1966 Jul; 29(4):768-87. PubMed ID: 5966434
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.