These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28164455)

  • 1. Smart approaches for assessing free-living energy expenditure following identification of types of physical activity.
    Plasqui G
    Obes Rev; 2017 Feb; 18 Suppl 1():50-55. PubMed ID: 28164455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.
    Chowdhury EA; Western MJ; Nightingale TE; Peacock OJ; Thompson D
    PLoS One; 2017; 12(2):e0171720. PubMed ID: 28234979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daily physical activity assessment with accelerometers: new insights and validation studies.
    Plasqui G; Bonomi AG; Westerterp KR
    Obes Rev; 2013 Jun; 14(6):451-62. PubMed ID: 23398786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can energy expenditure be accurately assessed using accelerometry-based wearable motion detectors for physical activity monitoring in post-stroke patients in the subacute phase?
    Mandigout S; Lacroix J; Ferry B; Vuillerme N; Compagnat M; Daviet JC
    Eur J Prev Cardiol; 2017 Dec; 24(18):2009-2016. PubMed ID: 29067851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usefulness of motion sensors to estimate energy expenditure in children and adults: a narrative review of studies using DLW.
    Sardinha LB; Júdice PB
    Eur J Clin Nutr; 2017 Mar; 71(3):331-339. PubMed ID: 28145419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial sensors to estimate the energy expenditure of team-sport athletes.
    Walker EJ; McAinch AJ; Sweeting A; Aughey RJ
    J Sci Med Sport; 2016 Feb; 19(2):177-81. PubMed ID: 25804422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.
    Ferguson T; Rowlands AV; Olds T; Maher C
    Int J Behav Nutr Phys Act; 2015 Mar; 12():42. PubMed ID: 25890168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation and reliability of two activity monitors for energy expenditure assessment.
    Brazeau AS; Beaudoin N; Bélisle V; Messier V; Karelis AD; Rabasa-Lhoret R
    J Sci Med Sport; 2016 Jan; 19(1):46-50. PubMed ID: 25466490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical activity assessment in the general population; instrumental methods and new technologies.
    Aparicio-Ugarriza R; Mielgo-Ayuso J; Benito PJ; Pedrero-Chamizo R; Ara I; González-Gross M;
    Nutr Hosp; 2015 Feb; 31 Suppl 3():219-26. PubMed ID: 25719789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrying loads: Validating a portable tri-axial accelerometer during frequent and brief physical activity.
    Zorrilla-Revilla G; Mateos A; Prado-Nóvoa O; Vidal-Cordasco M; Rodríguez J
    J Sci Med Sport; 2017 Aug; 20(8):771-776. PubMed ID: 28162914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of physical activity energy expenditure in Japanese adolescents assessed by EW4800P triaxial accelerometry and the doubly labelled water method.
    Ishikawa-Takata K; Kaneko K; Koizumi K; Ito C
    Br J Nutr; 2013 Oct; 110(7):1347-55. PubMed ID: 23544366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches.
    Farrahi V; Niemelä M; Kangas M; Korpelainen R; Jämsä T
    Gait Posture; 2019 Feb; 68():285-299. PubMed ID: 30579037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical activity assessment with accelerometers.
    Westerterp KR
    Int J Obes Relat Metab Disord; 1999 Apr; 23 Suppl 3():S45-9. PubMed ID: 10368002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating accelerometry as a measure of physical activity and energy expenditure in chronic stroke.
    Serra MC; Balraj E; DiSanzo BL; Ivey FM; Hafer-Macko CE; Treuth MS; Ryan AS
    Top Stroke Rehabil; 2017 Jan; 24(1):18-23. PubMed ID: 27322733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.
    Wullems JA; Verschueren SMP; Degens H; Morse CI; Onambélé GL
    PLoS One; 2017; 12(11):e0188215. PubMed ID: 29155839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Objective physical activity measurement in people with multiple sclerosis: a review of the literature.
    Casey B; Coote S; Donnelly A
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):124-131. PubMed ID: 28285547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer.
    Bonomi AG; Plasqui G; Goris AH; Westerterp KR
    J Appl Physiol (1985); 2009 Sep; 107(3):655-61. PubMed ID: 19556460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical activity assessment with accelerometers: an evaluation against doubly labeled water.
    Plasqui G; Westerterp KR
    Obesity (Silver Spring); 2007 Oct; 15(10):2371-9. PubMed ID: 17925461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.