BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28164704)

  • 1. Encapsulation of Gadolinium Oxide Nanoparticle (Gd
    Mekuria SL; Debele TA; Tsai HC
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6782-6795. PubMed ID: 28164704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometrical Confinement of Gadolinium Oxide Nanoparticles in Poly(ethylene glycol)/Arginylglycylaspartic Acid-Modified Mesoporous Carbon Nanospheres as an Enhanced T
    Kuang Y; Cao Y; Liu M; Zu G; Zhang Y; Zhang Y; Pei R
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26099-26107. PubMed ID: 30016059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T
    Li J; You J; Wu C; Dai Y; Shi M; Dong L; Xu K
    Int J Nanomedicine; 2018; 13():4607-4625. PubMed ID: 30127609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastrin-releasing peptide receptor-targeted gadolinium oxide-based multifunctional nanoparticles for dual magnetic resonance/fluorescent molecular imaging of prostate cancer.
    Cui D; Lu X; Yan C; Liu X; Hou M; Xia Q; Xu Y; Liu R
    Int J Nanomedicine; 2017; 12():6787-6797. PubMed ID: 28979118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-free gadolinium oxide for in vivo T1-weighted magnetic resonance imaging.
    Luo N; Tian X; Yang C; Xiao J; Hu W; Chen D; Li L
    Phys Chem Chem Phys; 2013 Aug; 15(29):12235-40. PubMed ID: 23771105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot preparation of hydrophilic manganese oxide nanoparticles as T
    Li J; Wu C; Hou P; Zhang M; Xu K
    Biosens Bioelectron; 2018 Apr; 102():1-8. PubMed ID: 29101783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent.
    Dai Y; Wu C; Wang S; Li Q; Zhang M; Li J; Xu K
    Nanomedicine; 2018 Feb; 14(2):547-555. PubMed ID: 29253637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent.
    Han L; Li J; Huang S; Huang R; Liu S; Hu X; Yi P; Shan D; Wang X; Lei H; Jiang C
    Biomaterials; 2011 Apr; 32(11):2989-98. PubMed ID: 21277017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.
    Xiao N; Gu W; Wang H; Deng Y; Shi X; Ye L
    J Colloid Interface Sci; 2014 Mar; 417():159-65. PubMed ID: 24407672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activatable molecular MRI nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle.
    Li J; Wang S; Wu C; Dai Y; Hou P; Han C; Xu K
    Biosens Bioelectron; 2016 Dec; 86():1047-1053. PubMed ID: 27501342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents.
    Li F; Zhi D; Luo Y; Zhang J; Nan X; Zhang Y; Zhou W; Qiu B; Wen L; Liang G
    Nanoscale; 2016 Jul; 8(25):12826-33. PubMed ID: 27297334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging.
    Fang J; Chandrasekharan P; Liu XL; Yang Y; Lv YB; Yang CT; Ding J
    Biomaterials; 2014 Feb; 35(5):1636-42. PubMed ID: 24290697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Positive Magnetic Resonance Imaging Applications of Poly(methyl vinyl ether-alt-maleic acid)-coated Ultra-small Paramagnetic Gadolinium Oxide Nanoparticles.
    Ahmad MY; Ahmad MW; Yue H; Ho SL; Park JA; Jung KH; Cha H; Marasini S; Ghazanfari A; Liu S; Tegafaw T; Chae KS; Chang Y; Lee GH
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32150823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics.
    Kojima C; Turkbey B; Ogawa M; Bernardo M; Regino CA; Bryant LH; Choyke PL; Kono K; Kobayashi H
    Nanomedicine; 2011 Dec; 7(6):1001-8. PubMed ID: 21515406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging.
    Watcharin W; Schmithals C; Pleli T; Köberle V; Korkusuz H; Hübner F; Waidmann O; Zeuzem S; Korf HW; Terfort A; Gelperina S; Vogl TJ; Kreuter J; Piiper A
    J Control Release; 2015 Feb; 199():63-71. PubMed ID: 25499552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO@Gd
    Woźniak A; Grześkowiak BF; Babayevska N; Zalewski T; Drobna M; Woźniak-Budych M; Wiweger M; Słomski R; Jurga S
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():603-615. PubMed ID: 28866207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging.
    Li J; You J; Dai Y; Shi M; Han C; Xu K
    Anal Chem; 2014 Nov; 86(22):11306-11. PubMed ID: 25338209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.
    Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S
    Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative toxicity and contrast enhancing assessments of Gd
    Zhang H; Wang T; Zheng Y; Yan C; Gu W; Ye L
    Biochem Biophys Res Commun; 2018 May; 499(3):488-492. PubMed ID: 29580992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor-penetrating Peptide Conjugated and Doxorubicin Loaded T
    Gao L; Yu J; Liu Y; Zhou J; Sun L; Wang J; Zhu J; Peng H; Lu W; Yu L; Yan Z; Wang Y
    Theranostics; 2018; 8(1):92-108. PubMed ID: 29290795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.