BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2816487)

  • 1. Ontogeny of the opiate phenotype: an approach to defining transsynaptic mechanisms at the molecular level in the rat adrenal medulla.
    La Gamma EF; De Cristofaro JD; Agarwal BL; Weisinger G
    Int J Dev Neurosci; 1989; 7(5):499-511. PubMed ID: 2816487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of transsynaptic regulation of adrenal enkephalin.
    La Gamma EF; Adler JE
    Brain Res; 1988 Apr; 467(2):177-82. PubMed ID: 3378168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroid hormone control of preganglionic innervation of the adrenal medulla and chromaffin cell development in the rat. An ultrastructural, morphometric and biochemical evaluation.
    Lau C; Franklin M; McCarthy L; Pylypiw A; Ross LL
    Brain Res Dev Brain Res; 1988 Nov; 44(1):109-17. PubMed ID: 2466585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reserpine increases opiate-like peptide content and tyrosine hydroxylase activity in adrenal medullary chromaffin cells in culture.
    Wilson SP; Abou-Donia MM; Chang KJ; Viveros OH
    Neuroscience; 1981; 6(1):71-9. PubMed ID: 6111764
    [No Abstract]   [Full Text] [Related]  

  • 5. Non-neurogenic mechanism for reserpine-induced release of catecholamines from the adrenal medulla of neonatal rats: possible modulation by opiate receptors.
    Chantry CJ; Seidler FJ; Slotkin TA
    Neuroscience; 1982 Mar; 7(3):673-8. PubMed ID: 6280102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent differences in 125I-nerve growth factor binding properties of rat adrenal chromaffin cells.
    Hofmann HD; Ebener C; Unsicker K
    J Neurosci Res; 1987; 18(4):574-7. PubMed ID: 2830413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and plasticity of adrenal chromaffin cells: cues based on in vitro studies.
    Hofmann HD; Seidl K; Unsicker K
    J Electron Microsc Tech; 1989 Aug; 12(4):397-407. PubMed ID: 2671306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells.
    Kumakura K; Karoum F; Guidotti A; Costa E
    Nature; 1980 Jan; 283(5746):489-92. PubMed ID: 6243403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal patterns of neurotrophic activities in rat adrenal medulla and cortex.
    Blottner D; Unsicker K
    Brain Res Dev Brain Res; 1989 Aug; 48(2):243-53. PubMed ID: 2776296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla.
    Schultzberg M; Lundberg JM; Hökfelt T; Terenius L; Brandt J; Elde RP; Goldstein M
    Neuroscience; 1978; 3(12):1169-86. PubMed ID: 368674
    [No Abstract]   [Full Text] [Related]  

  • 11. Up-regulation of ret by reserpine in the adult rat adrenal medulla.
    Powers JF; Brachold JM; Ehsani SA; Tischler AS
    Neuroscience; 2005; 132(3):605-12. PubMed ID: 15837122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TrkB and neurotrophin-4 are important for development and maintenance of sympathetic preganglionic neurons innervating the adrenal medulla.
    Schober A; Wolf N; Huber K; Hertel R; Krieglstein K; Minichiello L; Kahane N; Widenfalk J; Kalcheim C; Olson L; Klein R; Lewin GR; Unsicker K
    J Neurosci; 1998 Sep; 18(18):7272-84. PubMed ID: 9736648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurogenic signals regulate chromaffin cell proliferation and mediate the mitogenic effect of reserpine in the adult rat adrenal medulla.
    Tischler AS; McClain RM; Childers H; Downing J
    Lab Invest; 1991 Sep; 65(3):374-6. PubMed ID: 1890815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Appearance of enkephalin-immunoreactivity in rat adrenal medulla following treatment with nicotinic antagonists or reserpine.
    Bohn MC; Kessler JA; Golightly L; Black IB
    Cell Tissue Res; 1983; 231(3):469-79. PubMed ID: 6871966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The innervation of the adrenal gland. IV. Innervation of the rat adrenal medulla from birth to old age. A descriptive and quantitative morphometric and biochemical study of the innervation of chromaffin cells and adrenal medullary neurons in Wistar rats.
    Tomlinson A; Coupland RE
    J Anat; 1990 Apr; 169():209-36. PubMed ID: 2384334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rodent and primate adrenal medullary cells in vitro: phenotypic plasticity in response to coculture with C6 glioma cells or NGF.
    Notter MF; Hansen JT; Okawara S; Gash DM
    Exp Brain Res; 1989; 76(1):38-46. PubMed ID: 2568944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of nicotinic receptor function by opiate recognition sites highly selective for Met5-enkephalin[Arg6Phe7].
    Costa E; Guidotti A; Hanbauer I; Saiani L
    Fed Proc; 1983 Sep; 42(12):2946-52. PubMed ID: 6884531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-release of enkephalin and catecholamines from cultured adrenal chromaffin cells.
    Livett BG; Dean DM; Whelan LG; Udenfriend S; Rossier J
    Nature; 1981 Jan; 289(5795):317-9. PubMed ID: 7453829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pre- and postnatal administration of antibodies to nerve growth factor on the morphological and biochemical development of the rat adrenal medulla: a reinvestigation.
    Bode K; Hofmann HD; Müller TH; Otten U; Schmidt R; Unsicker K
    Brain Res; 1986 Jun; 392(1-2):139-50. PubMed ID: 2423196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of acetylcholine receptors by endogenous cotransmitters: studies of adrenal medulla.
    Costa E; Guidotti A; Hanbauer I; Hexum T; Saiani L; Stine S; Yang HY
    Fed Proc; 1981 Feb; 40(2):160-5. PubMed ID: 6257555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.