These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28165025)

  • 1. A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures.
    Peng Y; Wang D; Wang J; Li K; Tan Z; Shu Y; Jiang T
    Sci Rep; 2017 Feb; 7():42051. PubMed ID: 28165025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Antigenicity of Influenza A Viruses Using biophysical ideas.
    Degoot AM; Adabor ES; Chirove F; Ndifon W
    Sci Rep; 2019 Jul; 9(1):10218. PubMed ID: 31308446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A context-free encoding scheme of protein sequences for predicting antigenicity of diverse influenza A viruses.
    Zhou X; Yin R; Kwoh CK; Zheng J
    BMC Genomics; 2018 Dec; 19(Suppl 10):936. PubMed ID: 30598102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells.
    Katz JM; Webster RG
    J Gen Virol; 1992 May; 73 ( Pt 5)():1159-65. PubMed ID: 1588320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring the antigenic epitopes for highly pathogenic avian influenza H5N1 viruses.
    Peng Y; Zou Y; Li H; Li K; Jiang T
    Vaccine; 2014 Feb; 32(6):671-6. PubMed ID: 24380681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antigenic analysis of recent H1N1 influenza viruses with monoclonal antibodies.
    Yamada A; Cao MS; Imanishi J; Oyama S; Abe A; Katagiri S
    Acta Virol; 1991 Aug; 35(4):343-9. PubMed ID: 1724874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-evolution positions and rules for antigenic variants of human influenza A/H3N2 viruses.
    Huang JW; King CC; Yang JM
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S41. PubMed ID: 19208143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus.
    Liao YC; Lee MS; Ko CY; Hsiung CA
    Bioinformatics; 2008 Feb; 24(4):505-12. PubMed ID: 18187440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigenic drift and variability of influenza viruses.
    Schweiger B; Zadow I; Heckler R
    Med Microbiol Immunol; 2002 Dec; 191(3-4):133-8. PubMed ID: 12458347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of immunodominant sites in influenza hemagglutinin compromise antigenic variation and select receptor-binding variant viruses.
    Temoltzin-Palacios F; Thomas DB
    J Exp Med; 1994 May; 179(5):1719-24. PubMed ID: 8163950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model.
    Yin R; Tran VH; Zhou X; Zheng J; Kwoh CK
    PLoS One; 2018; 13(12):e0207777. PubMed ID: 30576319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of host cell-mediated variation on the international surveillance of influenza A (H3N2) viruses.
    Meyer WJ; Wood JM; Major D; Robertson JS; Webster RG; Katz JM
    Virology; 1993 Sep; 196(1):130-7. PubMed ID: 8356790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and antigenic analysis using monoclonal antibodies of a series of of influenza A (H3N2) and (H1N1) virus reassortants.
    Oxford JS; Corcoran T; Newman R; Major D; Schild GC
    Vaccine; 1986 Mar; 4(1):9-14. PubMed ID: 3962452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PREDAC-H3: a user-friendly platform for antigenic surveillance of human influenza a(H3N2) virus based on hemagglutinin sequences.
    Peng Y; Yang L; Li H; Zou Y; Deng L; Wu A; Du X; Wang D; Shu Y; Jiang T
    Bioinformatics; 2016 Aug; 32(16):2526-7. PubMed ID: 27153622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of the class II (I-Ak/I-Ek)-restricted T cell repertoire for influenza hemagglutinin and antigenic drift. Six nonoverlapping epitopes on the HA1 subunit are defined by synthetic peptides.
    Burt DS; Mills KH; Skehel JJ; Thomas DB
    J Exp Med; 1989 Aug; 170(2):383-97. PubMed ID: 2474053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtype- and antigenic site-specific differences in biophysical influences on evolution of influenza virus hemagglutinin.
    Stray SJ; Pittman LB
    Virol J; 2012 May; 9():91. PubMed ID: 22569196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemagglutinin mutations related to antigenic variation in H1 swine influenza viruses.
    Luoh SM; McGregor MW; Hinshaw VS
    J Virol; 1992 Feb; 66(2):1066-73. PubMed ID: 1731091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses.
    Wang X; Ilyushina NA; Lugovtsev VY; Bovin NV; Couzens LK; Gao J; Donnelly RP; Eichelberger MC; Wan H
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antigenic and genetic conservation of the haemagglutinin in H1N1 swine influenza viruses.
    Noble S; McGregor MS; Wentworth DE; Hinshaw VS
    J Gen Virol; 1993 Jun; 74 ( Pt 6)():1197-200. PubMed ID: 8389804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus.
    Robertson JS; Bootman JS; Newman R; Oxford JS; Daniels RS; Webster RG; Schild GC
    Virology; 1987 Sep; 160(1):31-7. PubMed ID: 3629978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.