These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 28165079)

  • 1. A review of high temperature co-electrolysis of H
    Zheng Y; Wang J; Yu B; Zhang W; Chen J; Qiao J; Zhang J
    Chem Soc Rev; 2017 Mar; 46(5):1427-1463. PubMed ID: 28165079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Temperature CO
    Song Y; Zhang X; Xie K; Wang G; Bao X
    Adv Mater; 2019 Dec; 31(50):e1902033. PubMed ID: 31282069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO
    Opitz AK; Nenning A; Rameshan C; Kubicek M; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35847-35860. PubMed ID: 28933825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.
    Bi L; Boulfrad S; Traversa E
    Chem Soc Rev; 2014 Dec; 43(24):8255-70. PubMed ID: 25134016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancements and prospects of perovskite-based fuel electrodes in solid oxide cells for CO
    Xu R; Liu S; Yang M; Yang G; Luo Z; Ran R; Zhou W; Shao Z
    Chem Sci; 2024 Jul; 15(29):11166-11187. PubMed ID: 39055001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Temperature Solid Oxide Electrolysis for Green Hydrogen Production.
    Liu H; Yu M; Tong X; Wang Q; Chen M
    Chem Rev; 2024 Sep; 124(18):10509-10576. PubMed ID: 39167109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syngas Production from CO
    Hou X; Jiang Y; Wei K; Jiang C; Jen TC; Yao Y; Liu X; Ma J; Irvine JTS
    Chem Rev; 2024 Apr; 124(8):5119-5166. PubMed ID: 38619540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas.
    Torrell M; García-Rodríguez S; Morata A; Penelas G; Tarancón A
    Faraday Discuss; 2015; 182():241-55. PubMed ID: 26204959
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Liu X; Ni J; Ni C
    Inorg Chem; 2023 Sep; 62(36):14748-14756. PubMed ID: 37647591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A techno-economic model of a solid oxide electrolysis system.
    Milobar DG; Hartvigsen JJ; Elangovan S
    Faraday Discuss; 2015; 182():329-39. PubMed ID: 26222446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
    Chen X; Guan C; Xiao G; Du X; Wang JQ
    Faraday Discuss; 2015; 182():341-51. PubMed ID: 26204849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Reversible Solid Oxide Cells for Powering Electric Vehicles, Long-Term Energy Storage, and CO
    Fang L; Liu F; Ding H; Duan C
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38607267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.
    Graves C; Chatzichristodoulou C; Mogensen MB
    Faraday Discuss; 2015; 182():75-95. PubMed ID: 26284532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton-Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C.
    Wu W; Ding H; Zhang Y; Ding Y; Katiyar P; Majumdar PK; He T; Ding D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800360. PubMed ID: 30479914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 4 × 4 cm
    Tong X; Ovtar S; Brodersen K; Hendriksen PV; Chen M
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25996-26004. PubMed ID: 31242388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in solid oxide cell technology for electrolysis.
    Hauch A; Küngas R; Blennow P; Hansen AB; Hansen JB; Mathiesen BV; Mogensen MB
    Science; 2020 Oct; 370(6513):. PubMed ID: 33033189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tri-Doped BaCeO
    Rajendran S; Thangavel NK; Ding H; Ding Y; Ding D; Reddy Arava LM
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38275-38284. PubMed ID: 32786238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite.
    Jun A; Kim J; Shin J; Kim G
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12512-5. PubMed ID: 27604172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe-Doped Ceria-Based Ceramic Cathode for High-Efficiency CO
    Zhang L; Jiang Y; Zhu K; Shi N; Rehman ZU; Peng R; Xia C
    Small Methods; 2024 Oct; 8(10):e2301686. PubMed ID: 38345267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Electrochemical CO
    Lin W; Su W; Li Y; Chiu TW; Singh M; Pan Z; Fan L
    Small; 2023 Oct; 19(41):e2303305. PubMed ID: 37309303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.