BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28165082)

  • 1. Microscopic nucleation and propagation rates of an alanine-based α-helix.
    Lin CW; Gai F
    Phys Chem Chem Phys; 2017 Feb; 19(7):5028-5036. PubMed ID: 28165082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model.
    Thompson PA; Eaton WA; Hofrichter J
    Biochemistry; 1997 Jul; 36(30):9200-10. PubMed ID: 9230053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct assessment of the α-helix nucleation time.
    Serrano AL; Tucker MJ; Gai F
    J Phys Chem B; 2011 Jun; 115(22):7472-8. PubMed ID: 21568273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix nucleation kinetics from molecular simulations in explicit solvent.
    Hummer G; García AE; Garde S
    Proteins; 2001 Jan; 42(1):77-84. PubMed ID: 11093262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic pathway analysis of an α-helix in two protonation states: Direct observation and optimal dimensionality reduction.
    Jas GS; Childs EW; Kuczera K
    J Chem Phys; 2019 Feb; 150(7):074902. PubMed ID: 30795683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent helix-coil transition of an alanine based peptide.
    Huang CY; Klemke JW; Getahun Z; DeGrado WF; Gai F
    J Am Chem Soc; 2001 Sep; 123(38):9235-8. PubMed ID: 11562202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helix-Coil Transition Courses Through Multiple Pathways and Intermediates: Fast Kinetic Measurements and Dimensionality Reduction.
    Jas GS; Kuczera K
    J Phys Chem B; 2018 Dec; 122(48):10806-10816. PubMed ID: 30395709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposing the Nucleation Site in α-Helix Folding: A Joint Experimental and Simulation Study.
    Acharyya A; Ge Y; Wu H; DeGrado WF; Voelz VA; Gai F
    J Phys Chem B; 2019 Feb; 123(8):1797-1807. PubMed ID: 30694671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy.
    Brewer SH; Song B; Raleigh DP; Dyer RB
    Biochemistry; 2007 Mar; 46(11):3279-85. PubMed ID: 17305369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helix-Coil Transition at a Glycine Following a Nascent α-Helix: A Synergetic Guidance Mechanism for Helix Growth.
    Pal S; Banerjee S; Prabhakaran EN
    J Phys Chem A; 2020 Sep; 124(37):7478-7490. PubMed ID: 32877193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study.
    Imamura H; Kato M
    Proteins; 2009 Jun; 75(4):911-8. PubMed ID: 19089951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of synthetic peptide folding.
    Sung SS; Wu XW
    Proteins; 1996 Jun; 25(2):202-14. PubMed ID: 8811736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual atom representation of hydrogen bonds in minimal off-lattice models of alpha helices: effect on stability, cooperativity and kinetics.
    Klimov DK; Betancourt MR; Thirumalai D
    Fold Des; 1998; 3(6):481-96. PubMed ID: 9889160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding kinetics of a naturally occurring helical peptide: implication of the folding speed limit of helical proteins.
    Mukherjee S; Chowdhury P; Bunagan MR; Gai F
    J Phys Chem B; 2008 Jul; 112(30):9146-50. PubMed ID: 18610960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides.
    Morozov AN; Lin SH
    J Phys Chem B; 2006 Oct; 110(41):20555-61. PubMed ID: 17034243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow folding-unfolding kinetics of an octameric β-peptide bundle.
    Montalvo GL; Gai F; Roder H; DeGrado WF
    ACS Chem Biol; 2014 Jan; 9(1):276-81. PubMed ID: 24164344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and folding dynamics of polyglutamic acid.
    Krejtschi C; Hauser K
    Eur Biophys J; 2011 May; 40(5):673-85. PubMed ID: 21274709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared signature and folding dynamics of a helical beta-peptide.
    Montalvo G; Waegele MM; Shandler S; Gai F; DeGrado WF
    J Am Chem Soc; 2010 Apr; 132(16):5616-8. PubMed ID: 20373737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.