These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28165133)

  • 1. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
    Latimer LN; Dueber JE
    Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae.
    Latimer LN; Lee ME; Medina-Cleghorn D; Kohnz RA; Nomura DK; Dueber JE
    Metab Eng; 2014 Sep; 25():20-9. PubMed ID: 24930894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
    Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS
    Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels.
    Kim B; Du J; Eriksen DT; Zhao H
    Appl Environ Microbiol; 2013 Feb; 79(3):931-41. PubMed ID: 23183982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved production of N-acetylglucosamine in Saccharomyces cerevisiae by reducing glycolytic flux.
    Lee SW; Oh MK
    Biotechnol Bioeng; 2016 Nov; 113(11):2524-8. PubMed ID: 27217143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineered Lactococcus lactis for fermentative production of (3S)-acetoin.
    Liu J; Solem C; Jensen PR
    Biotechnol Bioeng; 2016 Dec; 113(12):2744-2748. PubMed ID: 27344975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.
    Grotkjaer T; Christakopoulos P; Nielsen J; Olsson L
    Metab Eng; 2005; 7(5-6):437-44. PubMed ID: 16140032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
    Suástegui M; Guo W; Feng X; Shao Z
    Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae.
    Hou J; Jiao C; Peng B; Shen Y; Bao X
    Metab Eng; 2016 Nov; 38():241-250. PubMed ID: 27497973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes.
    Zuo Q; Zhao XQ; Xiong L; Liu HJ; Xu YH; Hu SY; Ma ZY; Zhu QW; Bai FW
    Biochem Biophys Res Commun; 2013 Oct; 440(2):241-4. PubMed ID: 24051089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amino-terminal tail of Hxt11 confers membrane stability to the Hxt2 sugar transporter and improves xylose fermentation in the presence of acetic acid.
    Shin HY; Nijland JG; de Waal PP; Driessen AJM
    Biotechnol Bioeng; 2017 Sep; 114(9):1937-1945. PubMed ID: 28464256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.
    Wasylenko TM; Stephanopoulos G
    Biotechnol Bioeng; 2015 Mar; 112(3):470-83. PubMed ID: 25311863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance.
    Divate NR; Chen GH; Divate RD; Ou BR; Chung YC
    Bioengineered; 2017 Sep; 8(5):524-535. PubMed ID: 27937123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae.
    Xu H; Kim S; Sorek H; Lee Y; Jeong D; Kim J; Oh EJ; Yun EJ; Wemmer DE; Kim KH; Kim SR; Jin YS
    Metab Eng; 2016 Mar; 34():88-96. PubMed ID: 26724864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae.
    Deaner M; Alper HS
    Metab Eng; 2017 Mar; 40():14-22. PubMed ID: 28212815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.
    Yuan Y; Du J; Zhao H
    Methods Mol Biol; 2013; 985():177-209. PubMed ID: 23417805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.