These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28165202)

  • 1. Supported Molybdenum Catalysts for the Deoxydehydration of 1,4-Anhydroerythritol into 2,5-Dihydrofuran.
    Sandbrink L; Beckerle K; Meiners I; Liffmann R; Rahimi K; Okuda J; Palkovits R
    ChemSusChem; 2017 Apr; 10(7):1375-1379. PubMed ID: 28165202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of 2-Butanol by Selective Hydrogenolysis of 1,4-Anhydroerythritol over Molybdenum Oxide-Modified Rhodium-Supported Silica.
    Arai T; Tamura M; Nakagawa Y; Tomishige K
    ChemSusChem; 2016 Jul; 9(13):1680-8. PubMed ID: 27226396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum-catalyzed deoxydehydration of vicinal diols.
    Dethlefsen JR; Lupp D; Oh BC; Fristrup P
    ChemSusChem; 2014 Feb; 7(2):425-8. PubMed ID: 24399816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Highly Active Monometallic Rhenium Catalysts for Selective Synthesis of 1,4-Butanediol from 1,4-Anhydroerythritol.
    Wang T; Tamura M; Nakagawa Y; Tomishige K
    ChemSusChem; 2019 Aug; 12(15):3615-3626. PubMed ID: 31134740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT study of the molybdenum-catalyzed deoxydehydration of vicinal diols.
    Lupp D; Christensen NJ; Dethlefsen JR; Fristrup P
    Chemistry; 2015 Feb; 21(8):3435-42. PubMed ID: 25588805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran.
    Xiong K; Lee WS; Bhan A; Chen JG
    ChemSusChem; 2014 Aug; 7(8):2146-9. PubMed ID: 24757086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxydehydration of polyols catalyzed by a molybdenum dioxo-complex supported by a dianionic ONO pincer ligand.
    Tran R; Kilyanek SM
    Dalton Trans; 2019 Nov; 48(43):16304-16311. PubMed ID: 31621730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cp
    Li J; Lutz M; Otte M; Klein Gebbink RJM
    ChemCatChem; 2018 Oct; 10(20):4755-4760. PubMed ID: 31007775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxydehydration of Biomass-Derived Polyols Over Silver-Modified Ceria-Supported Rhenium Catalyst with Molecular Hydrogen.
    Yamaguchi K; Cao J; Betchaku M; Nakagawa Y; Tamura M; Nakayama A; Yabushita M; Tomishige K
    ChemSusChem; 2022 May; 15(10):e202102663. PubMed ID: 35261197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.
    Li X; Zhang Y
    ChemSusChem; 2016 Oct; 9(19):2774-2778. PubMed ID: 27560452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration.
    Shiramizu M; Toste FD
    Angew Chem Int Ed Engl; 2013 Dec; 52(49):12905-9. PubMed ID: 24222362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Motifs in Deoxydehydration: Beyond the Realms of Rhenium.
    Petersen AR; Fristrup P
    Chemistry; 2017 Aug; 23(43):10235-10243. PubMed ID: 28423204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxydehydration of vicinal diols by homogeneous catalysts: a mechanistic overview.
    DeNike KA; Kilyanek SM
    R Soc Open Sci; 2019 Nov; 6(11):191165. PubMed ID: 31827851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deoxydehydration of polyols.
    Boucher-Jacobs C; Nicholas KM
    Top Curr Chem; 2014; 353():163-84. PubMed ID: 24756633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alumina supported molybdenum catalyst for lignin valorization: Effect of reduction temperature.
    Ma X; Cui K; Hao W; Ma R; Tian Y; Li Y
    Bioresour Technol; 2015 Sep; 192():17-22. PubMed ID: 26004558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythritol: Another C4 Platform Chemical in Biomass Refinery.
    Nakagawa Y; Kasumi T; Ogihara J; Tamura M; Arai T; Tomishige K
    ACS Omega; 2020 Feb; 5(6):2520-2530. PubMed ID: 32095676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic deoxydehydration of diols to olefins by using a bulky cyclopentadiene-based trioxorhenium catalyst.
    Raju S; Jastrzebski JT; Lutz M; Klein Gebbink RJ
    ChemSusChem; 2013 Sep; 6(9):1673-80. PubMed ID: 23843348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical studies on the mechanism of molybdenum-catalysed deoxydehydration of diols.
    Verdicchio F; Galindo A
    Dalton Trans; 2023 May; 52(18):5935-5942. PubMed ID: 37039232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3.
    Bourikas K; Fountzoula C; Kordulis C
    Langmuir; 2004 Nov; 20(24):10663-9. PubMed ID: 15544399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols.
    Shiramizu M; Toste FD
    Angew Chem Int Ed Engl; 2012 Aug; 51(32):8082-6. PubMed ID: 22764085
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.